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Chapter 1

Introduction

1.1 Nano-materials - a preview

The earliest observation of the change of material properties with reduced dimensionality

was made by the work of Michael Faraday in 1850 [1] on colloidal gold which showed optical

properties different from those of the corresponding bulk metal. Stained glass windows,

dating back to medieval times, provide beautiful examples of colours which can be created

by suspending small colloidal particles of copper, silver, and gold in the glass. About a

hundred years later, Richard P. Feynman gave a classic talk titled “There’s Plenty of Room

at the Bottom” at the annual meeting of the American Physical Society at the California

Institute of Technology in 1959, where he explained the enormous possibilities of materials

on a small scale. During the last two decades, research on materials with sizes in the

nanometer regime has gained huge momentum. The impressive progress in the fabrication

of low-dimensional structures has made it possible to reduce the effective dimension of

materials from three dimensional bulk, to quasi-two dimensional quantum well systems,

quasi-one dimensional quantum wires, and even quasi-zero dimensional quantum dots

(QDOT). Several books [2]-[5] and review articles [6]-[12] have been published in the recent

years on nano-materials. The interest in nano-materials arise because they constitute a

new type of material which have properties different from those of the individual atoms

and molecules or bulk and they are well suited for applications ranging from catalysis [13]

(e.g. catalytic converters in automobiles and electrochemical fuel cells) to optoelectronic

[14]-[16], magnetic [8] and even medical applications [17, 18]. More recently, there have

been developments towards biological uses. For example, gold nano-particles studded

1
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with short segments of DNA [19] could form the basis of an easy-to-read test to single

out genetic sequences.

An important reason for the interest in nano-materials is the size-dependent evolution

of their properties. This is partly because of the fact that being small objects, they have

most of the constituent atoms on their surface, thereby having large surface to volume

ratio. The surface energy contribution is therefore strongly size dependent and plays an

important role in deciding various properties. Another reason for the marked difference

in the characteristic features of nano-materials is the change in electronic properties with

reduced dimensionality. To have a feel, Fig. 1.1 shows the evolution of this density of

states as dimension is lowered one by one. In going from 3D bulk to 2D film, the parabolic

3D density of states is converted to a staircase structure in which the density of states

for individual sub-bands is constant in energy. For a quasi-1D rectangular quantum wire,

the density of states shows divergences at specific energies, which may lead to interesting

effects in their transport properties. Density of states of a quantum dot is, on the other

hand, is completely discrete.

Quantum Film Quantum WireBulk Quantum Dot

g g g g
3 2 1 0

.

.

.

.

E E EE

Figure 1.1: Evolution of the density of states (g’s) with dimensionality showing the vari-

ation of density of states with energy for bulk solid, quantum film, quantum wire and

quantum dot. (Taken from Ref. [20])
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With the present advance in technology, it is now possible to produce and to measure

most of the properties of the nano-materials. However, the crucial point is to understand

their behaviour, for they are much more complex than the bulk. Theoretical investiga-

tions therefore play a vital role in understanding material properties in this new field of

science. Indeed, investigations of properties of finite material aggregates and studies with

the aim at gaining deep insights into the development of material characteristics from

the molecular regimes to the bulk phase, are major themes of current interdisciplinary

basic and applied research endeavours. To this day, the fact that experiments and theory

proceed hand in hand is a hallmark of the work in this field. Not everything that we imag-

ine, analyze or compute can be measured and many observations still provide significant

challenge for their interpretation.

Clusters are one type of nano-materials belonging to the general class of QDOT and are

made up of atoms or molecules, ranging from a dimer to several thousands of atoms. They

may consist of identical atoms or molecules or two or more different species. They can

be classified as small clusters or large clusters depending upon the number of constituent

atoms and molecules. For small clusters, physical properties change abruptly as we change

their size. On the other hand, if the properties vary relatively smoothly with the number

of constituent atoms and molecules, nevertheless showing significant finite size effects,

then these clusters are classified as large clusters. In this thesis, we have theoretically

investigated the electronic properties of semiconductor nano-clusters generally belonging

to the class of large clusters, as well as 3d transition metal clusters which generally belong

to the class of small clusters.

We have studied the structural stability of semiconductor nano-clusters, considering

the effect of size, stoichiometry and passivation. To understand this in the context of the

bulk scenario, we have also revisited the structural stability in bulk phase of binary octet

semiconductors. In the bulk, most of the II-VI and III-V semiconductors have either the

cubic zincblende or hexagonal wurtzite structure at ambient temperature and pressure.

The structural differences between these two phases is very subtle.

For transition metal clusters, we have dealt with small clusters and have studied the

evolution of structure and magnetic properties with the increase of cluster size by one-

by-one atom addition. We have studied both mono-atomic as well as di-atomic transition
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metal clusters.

Besides nano-clusters, we have also studied the electrical transport properties of atomic

sized conductors like a mono-atomic wire connected to semi-infinite leads. The important

point about this study is that we have, for the first time, implemented the block-recursion

approach [21]-[23] to calculate electrical conductance for such systems.

In the following three sections, we explain our motivation behind studying these three

classes of problems in particular. The final section contains the outline of the thesis.

1.2 Bulk and nano-crystalline semiconductors

Because of their potential application in optoelectronic devices, semiconductor materials

have been the subject of intensive experimental and theoretical research. An important

issue in tetrahedrally coordinated bulk semiconductors of the ANB8−N type is that their

structure belongs either to the cubic zincblende (ZB) or the hexagonal wurtzite (WZ) at

ambient temperature and pressure. Depending on the details of growth parameters, a

number of these binary semiconductors like SiC, CdS, CdSe, ZnS, CuCl and CuBr can be

prepared at ambient pressure in either form [24]. This is known as WZ-ZB polytypism.

Thermodynamical analysis by Jagodzinski [25] demands that a necessary condition for

polytypism is a low temperature cubic phase with WZ-like phases at elevated tempera-

tures. The experimentally stable crystal structure at low temperature for several binary

octet compounds are given in Fig. 1.2. A large number of theoretical investigations

[26]-[29] have been devoted to the systematization of polytypism in bulk binary octet

semiconductors and the qualitative conclusion coming out of all these works is that more

ionic compounds favour WZ structure, while more covalent compounds favour ZB phase.

While structural stability in the bulk phase has been well studied, speculations began

during the last decade about what happens to structural stability in nano regime ? In

semiconductor nano-clusters, size effect is observable when the particle diameter is almost

equal to or smaller than the Bohr diameter of excitons in the corresponding bulk material.

This can be observed as a blue shift in the optical band gap with decreasing particle size

[30, 31] (therefore, one can produce white CdS instead of orange bulk CdS and yellow-

brown PbS instead of black bulk PbS). Being finite objects, clusters are expected to have
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Figure 1.2: The experimentally stable crystal structures of octet AB compounds, WZ =

wurtzite, ZB = zincblende, Cinb. = cinnabar, **** means that the compound does not

exist. (Table adapted from Ref. [29])

noncrystalline structures. However, it is also possible to build up crystalline clusters,

which have bulk-like core regions and modified surfaces. An important issue in cluster

science is to understand whether crystalline or noncrystalline structures prevail for a

given size and composition. One problem with studying bare clusters is that they could be

difficult to isolate and handle on a preparative scale like conventional molecules. To enable

the investigation of approximately uniformly sized clusters and exploit cluster properties in

device applications, it is necessary to protect (“passivate”) them with a ligand shell as this

avoids coalescence at high cluster densities. Determination of crystalline structure of nano-

clusters is, therefore, a complex issue, as the stable phase depends on several parameters,

like size, shape, stoichiometry, type of passivator used etc. Methods have recently been

developed to prepare highly crystalline, mono-disperse nano-crystals of semiconductors in

the condensed phase [32]-[41]. However, theoretical studies [42]-[44] have been devoted so

far only to account for band gap variation with cluster size, not the structural stability

issue in a systematic manner. One of our main concern in this thesis is, therefore, the

structural stability issue of semiconductor nano-clusters.
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1.3 Transition metal small clusters

The interesting fact about clusters is that their properties are not only size dependent,

even the addition or subtraction of a single atom can change cluster properties drastically

if the cluster size is sufficiently small. It is therefore important to study the evolution

of cluster properties as it is built up atom by atom. Geometrical structure of clusters

is a crucial ingredient in any attempt of interpreting any experimental measurement of

electronic properties. However, these small clusters are produced in gas phase and un-

fortunately there is no direct means in experiments to get information about geometrical

structure. The reactivity toward certain molecules provides an indirect way to determine

the structure since the number of molecules adsorbed on the cluster surface gives infor-

mation on the number of available adsorption sites and consequently on the shape of the

cluster. A difficulty in this context is the extent of modification of the original free cluster

structure by the adsorbed molecules. Evidently the kind of adsorbed molecules should

be such as to leave the geometry of the cluster unaffected. First principles methods can,

therefore, play a vital role in determining the ground state cluster geometry. On top

of ground state, it is also possible to have many stable local structures for a particular

sized cluster within very small energy window. These are called ‘isomers’ whose number

increase very rapidly with the number of atoms constituting the clusters.

Transition metal clusters are of special interest in the context of small clusters, as the

free atoms of the transition metals have an incomplete d-shell in the ground state and

these localized d-electrons dominate most of their properties, in contrast to clusters or

solids of simple sp-metals whose properties are dominated by the delocalized behaviour of

the external sp electrons. Because of the incomplete d-shell, most of the transition metal

clusters possess finite magnetic moment. In fact, magnetism of transition metal (TM)

clusters constitutes one of the fundamental challenges, since atomic and bulk behaviours

are intrinsically different. Atomic magnetism is due to electrons that occupy localized

orbitals (it is well known that in isolated atoms almost all elements show a non-vanishing

magnetic moment given by Hund’s rules), while in TM solids the electrons responsible

for magnetism are itinerant, e.g. conducting d-electrons. Consequently, the magnetic

properties of nano particles are very sensitive to size, composition and local atomic en-
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Figure 1.3: Schematic diagram of the Stern-Gerlach cluster beam experiment (adapted

from Ref. [45])

vironment thus showing a wide variety of intriguing phenomena. There have been many

experimental studies [10], [45]-[49] of the magnetism of free transition-metal clusters in

molecular beams which use Stern-Gerlach (SG) type deflection experiments. A schematic

diagram of the experimental setup is shown in Fig. 1.3.

Metal clusters are produced in a laser vaporization cluster source, leave the source in

a supersonic expansion of helium gas and form a cluster beam. The cluster beam passes

through a series of collimating slits and a rotating beam chopper before entering the

gradient field magnet. While passing through gradient magnet, the free magnetic clusters

interact with the applied inhomogeneous magnetic field and are deflected from the original

beam trajectory. The deflection experiments are normally analyzed assuming that the

free ferromagnetic clusters are single-domain particles following the super-paramagnetic

behaviour, which is true under certain experimental conditions, namely, when the thermal

relaxation time of the clusters is much lower than the time required by the clusters to

pass through the poles of the Stern-Gerlach magnet. As the deflection is proportional to

the cluster magnetization M , magnetization is therefore computed from the magnitude

of beam deflection. The intrinsic cluster magnetic moment µ is in turn calculated from
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M assuming Curie law behaviour. The validity of applying this thermodynamic-based

analysis to molecular beam deflection experiments has been discussed in detail elsewhere

[48, 49].

While investigations on pure or mono-atomic transition metal clusters yield insight

into the basic mechanisms, alloy or multi-atomic clusters seem to be more promising in

terms of technical application since they offer the possibility to adjust the properties by

varying the composition and atomic ordering in addition to the size of the cluster. Surface

structures, compositions and segregation properties [50, 51] of alloy clusters are of interest

as they are important in determining chemical reactivity and especially catalytic activity

[52]. Another interesting property of alloy clusters is that their structures may be quite

different from the structures of the pure clusters of the same size and they may display

properties which are distinct from the corresponding bulk alloys due to finite size effect.

For example, iron and silver are immiscible in the bulk, but readily mix in finite clusters

[53]. One major part of this thesis has been devoted to study the structures, energetic,

magnetism and chemical reactivity of 3d transition metal clusters and their alloys in small

sizes.

1.4 Atomic sized conductors

The common knowledge about the electrical properties of a piece of any metal becomes in-

valid, as soon as its size approaches the atomic scale. The familiar Ohm’s law, from which

we learn that the resistance of a conductor scales proportional to its length, breaks down.

The reason is that the distance an electron travels between two scattering events is typi-

cally much larger than the atomic size. The electrons, therefore, traverse an atomic-sized

conductors ballistically, and the resistance becomes independent of its length. At this

length scale quantum effects such as conductance quantization, interference of electron

waves, Anderson localization, Coulomb blockade, and Kondo effects become dominant.

In fact, when the size of the conductor becomes of the order of or less than the inelastic

scattering length, the character of the resistance changes and it is necessary to invoke

the wave nature of the electrons in the conductor for a proper description. Experiments

on molecular junctions are far from trivial. The main difficulty in experimental mea-
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surement comes from the extreme sensitivity of the junction’s electrical properties to the

detailed atomic arrangement of the contacts, which is beyond experimental control. This

is particularly pronounced at the nano-scale, where the electrons often travel phase coher-

ently through the junction. This means that interference effects are directly observable in

macroscopic quantities, such as conductance. One example of experimental measurement

of conductance at the gold contact is shown in Fig. 1.4, which gives a clear evidence of

conductance quantization.

Figure 1.4: Quantized conductance curve for a gold contact measured at room temperature

in UHV by pressing an STM tip into a clean gold surface and recording the conductance

while retracing the tip. (Adopted from Ref. [54]). The direction of tip motion is given

by arrow.

The above discussion demonstrates that theoretical study is very demanding in order

to understand not only the quantum nature of electrons, but also the atomistic details

of the junctions. Landauer first formulated a quantum mechanical approach to study

transport property of atomic sized conductors and related the conductance G to the total

transmission probability of the electrons at the Fermi energy T (EF ) in the linear response

regime as,

G =
2e2

h
T (EF ) (1.1)

In this thesis, we have introduced a method to calculate the transmission function and to

study the effect of contact on the conductance of atomic chain.
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1.5 Outline of the thesis

The outline of the thesis is as follows:

(i) Chapter 2 introduces and discusses in some detail the theoretical frameworks to

carry out electronic structure calculations in this thesis.

(ii) For semiconductor clusters, we are mainly concerned about their structural stability

between ZB and WZ phases at ambient pressure. For this purpose, we have first

attempted to understand the relative stability in bulk phase for CdS, CdSe and

CdTe in Chapter 3 in terms of constructed Wannier functions.

(iii) Moving to nano-clusters, we have considered CdS in particular. Our choice is primar-

ily motivated by experimental controversies (cf. section 4.1 of chapter 4) concerning

the structural stability of medium sized CdS nano-clusters. We have dealt with this

problem in chapter 4.

(iv) Two recent experiments [46, 47] of magnetic moment measurement of smaller sized

cobalt clusters motivated us to study the interplay of structure and magnetism in

pure Con clusters (n ≤ 20), which is the subject matter of chapter 5. The structural

growth of these clusters have been compared with other 3d late transition metal

clusters.

(v) Chapter 6 provides an account of our study on Co13−mVm (m = 1-4) alloy clusters

which are reported to show anomalous variation in reactivity with hydrogen [55].

Here we have investigated the influence of V doping in Co13 cluster on structure,

energetics and chemical reactivity using ab-initio calculations.

(vi) Finally, chapter 7 presents our method of conductance calculation of atomic sized

conductor and discusses the influence of nano-contacts.
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Chapter 2

Theoretical background of electronic structure

calculation

2.1 The many-body Hamiltonian

Atoms, molecules, clusters or solids, composed of ion cores and valence electrons, are

described by a many-body Schröginger equation of the form HΨ(R, r) = EΨ(R, r) with

H = −
∑

i

h̄2

2me
∇2

ri
−
∑

I

h̄2

2MI
∇2

RI
−
∑

i,I

ZIe
2

|RI − ri|
+
∑

i>j

e2

|ri − rj|
+
∑

I>J

ZIZJe
2

|RI −RJ |
(2.1)

where R = {RI} and r = {ri} are the ionic and electronic coordinates respectively (for

simplicity we refer ion cores as ions and valance electrons as electrons). This is a complex

problem to solve because it deals with a large number of interacting ions and electrons

which have very different masses. The first step towards the simplification of the above

equation is the Born-Oppenheimer (B-O) approximation (1927) [1] : since ions are much

heavier than electrons [(me/MI) ∼ (1/1836) for H atom], they move much slower com-

pared to electrons and the electrons respond instantaneously to any ionic motion. In

essence the electronic and the ionic degrees of freedom can be decoupled and the elec-

tronic properties can be calculated by assuming that the ions are fixed to a particular

configuration. Following this approximation, the kinetic energy of ions can be neglected

and the ion-ion interaction [last term in Eqn. (2.1)] is assumed to be constant. The

constant term is called Madelung energy and is calculated classically. So under B-O ap-

proximation, the many-body Hamiltonian for a system of N interacting electrons moving

15
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in the field of fixed ion cores, takes the form

H = −
∑

i

h̄2

2me
∇2

ri
−
∑

i,I

ZIe
2

|RI − ri|
+
∑

i>j

e2

|ri − rj|
(2.2)

2.2 Single-particle approximation

Even with this simplification, it represents a very complicated many-electron eigen value

problem and further approximation is needed to solve it. Efforts have been put, there-

fore, to develop an effective single-particle picture, in which the system of interacting

electrons can be mapped into a system of non-interacting quantum mechanical particles

that approximates the behaviour of original system. Two distinct approaches have been

put forward in this direction: wave function approach and density functional theory.

2.2.1 Wave function approach

Hartree (1928) first expressed the many-body wave function as a product of single-electron

functions {φi(ri)} as ψH(r1, r2, . . . , rN) = φ1(r1)φ2(r2) . . . φN(rN) and solved, numerically,

the equation for each electron moving in a central potential due to other electrons and

the nucleus [2]. This simplest approximation can only take into account the electron-

electron Coulomb repulsion in a mean-field way, neglecting the exchange and correlation

properties completely. The next level of sophistication was then introduced by Fock

(1930) [3], incorporating the antisymmetric character of electronic wave function in terms

of Slater determinant [4]

ψHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) . . . φ1(rN)

φ2(r1) φ2(r2) . . . φ2(rN)
...

...
...

φN(r1) φN(r2) . . . φN(rN)

∣∣∣∣∣∣∣∣∣∣∣

, (2.3)

Application of the variational principle shows that such one-electron wave functions

satisfy the Hartree-Fock (H-F) equations like

[
− h̄2

2me

∇2
ri

+ Vion(ri) + V H
i (ri) + V X

i

]
φi(ri) = ǫiφi(ri) (2.4)
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with

V H
i (ri) = e2

occ∑

j

∫ |φj(rj)|2
|ri − rj |

drj (2.5)

as the Hartree potential and the non-local exchange potential is given by

V X
i φi(ri) = −

occ∑

j

φj(ri)
∫
φ∗

j(rj)
e2

|ri − rj|
φi(rj)drj (2.6)

The effective Hartree potential as given by Eqn. (2.5) includes an unrestricted sum over all

electrons (denoted by index j), thereby includes an unphysical self term and the Hartree

potential becomes orbital independent, while Hartree potential defined by Hartree himself

subtracts this self-term and it is orbital dependent. However, this unphysical term in H-

F theory, has no effect as it is canceled by a same term in exchange potential. The

exchange term V X
i describes the effects of exchange between electrons. In agreement with

the variational principle, the Hartree-Fock energy EHF
0 is higher than the exact ground

state energy Eexact
0 of the many body system and the difference Eexact

0 - EHF
0 is called

the correlation energy. In spite of the importance and achievements of the Hartree-Fock

approximation, corrections beyond it are often considered due to the fact that a single

determinantal state, even with the best possible orbitals, remains in general a rather poor

representation of the complicated ground state wave function of a many-body system.

Therefore, methods like configuration interaction (CI) approach have been developed

by quantum chemists, which consider a linear combination of different determinantal

states to improve the situation. However, such approach becomes quickly computationally

prohibitive as the system size grows.

2.2.2 Density functional theory

In density functional theory (DFT) [5, 6] one ignores the precise details of the many-body

wave function ψ(r1, r2, . . . , rN) and takes the density of electrons in the system ρ(r) = N
∫
ψ∗(r, r2, ...., rN)ψ(r, r2, ...., rN)dr2dr3....drN as the basic variable. This is a huge simpli-

fication, since the many-body wave functions need not to be explicitly specified, as is in

case of Hartree and Hartree-Fock approximations. Thus, instead of starting with a drastic

approximation for the behaviour of the system, one can develop the approximate single-

particle equations in an exact manner, and then introduce approximations as needed.
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Also it gives huge simplification by replacing the complex object like wave-function which

depends on the positions of all the N electrons by electron density which depends only

on single position.

Basic theorems of DFT and Kohn-Sham equation

Density functional theorem can be expressed in terms of two basic theorems:

Theorem I: For a system of interacting particles in an external potential Vext(r), the

potential Vext(r) is determined uniquely, up to an additive constant, by the ground state

density. This defines a one-to-one correspondence between an external potential Vext(r)

and the density ρ(r). Since external potential determines the wave function, the wave

function must be a unique functional of density. Therefore, for a given ground state

density, all properties of the system are completely determined.

Theorem II: If T represents the kinetic energy and U the electron-electron interaction,

then the expression, F [ρ(r)] = 〈ψ|T +U |ψ〉 must be a universal functional of the density,

since the kinetic energy and the interaction energy are functional of density only. From

this considerations, we conclude that the total energy of the system is a functional of the

density and is given by,

Ev[ρ(r)] = 〈ψ|H|ψ〉 = F [ρ(r)] +
∫
Vext(r)ρ(r)dr (2.7)

The Hohenberg-Kohn variational theorem states that if the functional Ev[ρ(r)] is varied

with respect to ρ(r), then Ev[ρ0(r)] takes the lowest value, corresponding to the ground

state, with the correct ground state density ρ0(r), i.e. Ev[ρ0] ≤ Ev[ρ].

Now to reduce the expression (2.7) to a single particle equation, one can write the

universal functional as

F [ρ] = TS[ρ] +
e2

2

∫
ρ(r)ρ(r′)

|r − r′| drdr
′ + Exc[ρ(r)] (2.8)

where TS[ρ] is the kinetic energy of the non-interacting electrons with density ρ(r), second

term is the classical mean-field inter-electron Coulomb (Hartree) energy ECoulomb, which

we separate out from the electron-electron interaction term in F and the third term Exc (=

〈T 〉 - TS[ρ] + 〈U〉 - ECoulomb ) is the non-classical many-body exchange-correlation energy
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functional. Therefore the ground-state energy functional in the Kohn-Sham approach is

EKS[ρ] = TS[ρ] +
∫
Vext(r)ρ(r)dr +

e2

2

∫
ρ(r)ρ(r′)

|r− r′| drdr
′ + Exc[ρ(r)] (2.9)

There are three major problems in evaluating the functional EKS[ρ]: (i) one needs a

method of self-consistently evaluating the correct ground state charge density ρ(r), (ii)

evaluation of TS[ρ] given only ρ(r) cannot be done straightforwardly as there is no in-

formation on wave functions, and (iii) the functional Exc[ρ] remains unknown and must

therefore be represented in some simple and sufficiently accurate form.

These difficulties were resolved by Kohn and Sham (1965). The minimization of EKS is

carried out subject to the constraint of normalized density
∫
ρ(r)dr = N . Application of

the variational principle of the Kohn-Sham theory requires that for the ground state

δ

δρ(r)
{EKS[ρ] − µN} = 0 (2.10)

µ is the Lagrange multiplier. Using Eqn. (2.9), one gets,

δTS[ρ]

δρ(r)
+ VKS(r) = µ (2.11)

where

VKS(r) = Vext(r) + VH(r) + Vxc(r) = Vext(r) +
∫ ρ(r′)

|r− r′|dr
′ +

δExc

δρ(r)
(2.12)

Kohn and Sham showed that solving Eqn. (2.11) is equivalent to solving the following set

of single-particle Schrödinger-like equations for the variational wave-functions of fictitious

non-interacting electrons
[
− h̄2

2me
∇2 + VKS(r)

]
φi = ǫiφi (2.13)

where φi and ǫi are the single-particle wave-functions and eigenvalues, respectively, such

that ρ(r) =
∑

i

|φi(r)|2. The Eqn. (2.13), therefore, represents the set of Kohn-Sham

self-consistent field equations.

The first two difficulties outlined above are now resolved. Firstly, the ground-state elec-

tronic charge density is obtained through the self-consistent solution of Eqn. (2.13).

Secondly, once the self-consistency is reached, TS[ρ] is calculated as

TS[ρ] =
∑

i

〈φi| −
h̄2

2me

∇2|φi〉 =
∑

i

ǫi −
∫
VKS[ρ]ρ(r)dr (2.14)
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Exchange-correlation functional

As mentioned earlier, the third difficulty with the application of DFT is that the exact

form of Exc[ρ] is unknown and it’s a great challenge in DFT. It is to be noted that this

exchange-correlation energy contains — (i) kinetic correlation energy, which is the dif-

ference in the kinetic energy functional between the real and the non-interacting system,

(ii) the exchange energy, which arises from the requirement of antisymmetric nature of

fermions, (iii) Coulombic correlation energy, which arises from the inter-electronic repul-

sion and (iv) a self-interaction correction.

Two levels of approximations have been suggested to estimate Exc[ρ] : local density ap-

proximation (LDA) and generalized gradient approximation (GGA). They are very suc-

cessful in predicting most of the material properties and below we discuss them briefly.

The local density approximation (LDA)

In this approximation it is assumed that the electronic charge density in the system

corresponds to that of a homogeneous electron gas and the functional Exc[ρ] is approxi-

mated as

ELDA
xc [ρ(r)] =

∫
ρ(r)Exc[ρ(r)]dr, (2.15)

where Exc[ρ] is the exchange plus correlation energy per electron in a homogeneous electron

gas with electron density ρ(r). The functional derivative of ELDA
xc gives the exchange-

correlation potential within LDA,

V LDA
xc =

δELDA
xc

δρ
= Exc [ρ(r)] + ρ(r)

∂Exc[ρ]

∂ρ
. (2.16)

The contribution of exchange to the total energy is ELDA
x [ρ(r)] = −3

4
e2
(

3
π

)1/3
[ρ(r)]1/3

(one can obtain this general form of exchange part starting from the solution of a uniform

system [7]). For the correlation part, a number of expressions have been given. In all

these expressions, the exchange-correlation functional is written as

ELDA
xc [ρ(r)] =

∫
(Ex[ρ(r)] + Ec[ρ(r)])ρ(r)dr (2.17)

where the pure exchange energy Ex[ρ] is the expression as given above. The expressions for

correlation energy are usually given in terms of Wigner-Seitz radius, rs = (3/4πρ(r))1/3.
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The expression proposed by Wigner [8] extrapolates between known limits in rs, obtained

by series expansions. The parameters that appear in the expression proposed by Hedin

and Lundquist [9] are determined by fitting to the energy of the uniform electron gas,

obtained by numerical methods at different densities. A similar type of expression was

proposed by Perdew and Zunger [10], which captures the more sophisticated numerical

calculations for the uniform electron gas at different densities performed by Ceperly and

Alder [11]. The common feature in all these approaches is that Exc depends on ρ(r) in a

local fashion, that is, ρ needs to be evaluated at one point in space at a time. For this

reason they are referred to as the Local Density Approximation to Density Functional

Theory. This is actually a severe restriction, because even at the exchange level, the

functional should be non-local, that is, it should depend on r and r′ simultaneously. It is

a much more difficult task to develop non-local exchange-correlation functionals.

The generalized gradient approximation (GGA)

In a generalized gradient approximation, the functional depends on the density and

its gradient,

EGGA
xc [ρ] =

∫
ρ(r)Exc(ρ(r), |∇ρ(r)|)dr (2.18)

Several GGA functionals like Perdew-Wang 1991 [12] and Perdew, Burke and Ernzerhof

(PBE) [13] are the most popular. In comparison to LDA, GGA’s tend to improve total

energies, atomization energies, energy barriers and structural energy differences [13], while

retaining all the correct features of LDA. GGA’s expand and soften bonds, an effect that

sometimes corrects and sometimes overcorrects the LDA prediction.

2.3 General band-structure methods

To solve the single-particle Kohn-Sham Eqn. (2.13) and to obtain the eigenvalues (band

structure) and eigenfunctions, a number of methods have been introduced. These meth-

ods are based on either k-space approach or real space approach and are applicable to

both finite systems such as molecules or clusters as well as extended systems such as

solids. For periodic solids, one usually exploits the translational periodicity and handles

the solutions in k-space. For finite sized molecules and clusters also, k-space approach is

used by constructing super-cell which imposes artificial periodicity in the system. Since
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super-cell must be large enough to avoid spurious interactions with the images, the sec-

ular equation becomes large and it will be computationally heavy to solve, specially for

bigger clusters. On the other hand, real space based methods [14] like recursion become

particularly advantageous for finite and non-periodic systems where the wave-functions

vanish outside a boundary and the Coulomb potentials, in general, do not obey periodic

boundary conditions. This avoids the use of artificial super-cell.

2.3.1 Basis sets

Regardless of whether it is k-space approach or real-space approach, one has to choose

an appropriate basis set to expand the single-particle wave-functions and depending on

the choice of basis functions, different schemes, therefore, can be broadly grouped into

two categories: (i) methods using energy independent basis sets or fixed basis sets, like

tight binding method using linear combination of atomic orbitals (LCAO) type basis [15],

orthogonalized plane wave (OPW) method within a pseudopotential scheme using plane

waves orthogonalized to core states as the basis set [16, 17] and (ii) methods using energy

dependent basis set, like cellular method [18], augmented plane wave (APW) method [19]

and the Korringa-Kohn-Rostocker (KKR) Green’s function method [20], which use partial

waves as basis set. In the methods of fixed basis set, by standard variational techniques

one obtains a set of linear eigenvalue equations given by

(H − ǫO).b = 0 (2.19)

in terms of the Hamiltonian H and overlap matrix O to determine the eigenvalues ǫ and

the expansion coefficients b. Most of the fixed basis set uses pseudopotential for the

electron-ion interaction, where localized core states are got rid of by replacing the strong

crystalline potential by a weak pseudopotential, while giving faithful determination of

the valence and conduction bands. Pseudopotential in conjunction with plane wave basis

has become one of the most versatile and efficient approaches for calculating electronic

properties. Methods of partial waves, on the other hand, result in a secular equation of

the form,

M(ǫ).b = 0 (2.20)
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In contrast to Eqn. (2.19) which is a polynomial in ǫ, the Eqn. (2.20) has a complicated

non-linear energy dependence. We have no a priori idea how many roots we expect, nor

whether all roots are physically permissible. The partial wave methods though compli-

cated to solve, do have advantages. Firstly, they provide solutions of arbitrary accuracy

for a muffin-tin potential and for closed packed systems, this makes them far more ac-

curate than the traditional fixed basis methods. Secondly, the information about the

potential enters only via a few functions of energy. However as already stated, it has the

disadvantage of being computationally heavy, the eigen energy ǫj must be found individ-

ually by tracing the roots of the determinant of M as a function of ǫ. To overcome this,

Andersen (1975) first proposed a unified approach for linear methods [21] such as linear

augmented plane wave (LAPW) and linear muffin-tin orbital (LMTO) methods which are

the linearized versions of APW and KKR methods, respectively. These methods therefore

lead to secular equations like (2.19) rather than (2.20) and combine the desirable features

of the fixed basis and partial wave methods.

In this thesis, we use pseudopotential method along with plane wave basis, as implemented

in the Vienna ab initio simulation package (VASP) [22], to study finite sized clusters. Be-

ing finite sized objects, cluster calculations have been done using super-cell technique and

structural optimization is performed using conjugate gradient or quasi-Newtonian dynam-

ics. For bulk semiconductors as studied in chapter 3, we use N-th order muffin-tin orbital

(NMTO) method [23], which use LMTO self-consistent potential as inputs. Therefore, in

the following two subsections, we discuss the pseudopotential method and LMTO method

in greater details.

Pseudopotential Method

It is well known that electrons in the outermost shell of atoms, the so called valence

electrons, actively participate in determining the most of the chemical and physical prop-

erties of molecules and solids. This leads to the idea behind the pseudopotential theory.

Here we will develop the basic concept of pseudopotential by a simple transformation of

single-particle Kohn-Sham equation (2.13) for an atom where core and valence states are

denoted as ψc and ψv respectively. A new set of single-particle valence states φ̃v can be
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defined as

ψv(r) = φ̃v +
∑

c

αcψ
c(r) (2.21)

where αc are determined from the condition that ψv and ψc are orthogonal to each other

i.e 〈ψv|ψc〉 = 0 which gives αc = - 〈ψc|φ̃v〉. Eqn. (2.13) then can be manipulated, with

the help of Eqn. (2.21), to

[
TS + VKS +

∑

c

(ǫv − ǫc)|ψc〉〈ψc|
]
φ̃v = ǫvφ̃v (2.22)

with ǫc as the eigenvalue of the core state. Considering VR =
∑

c

(ǫv − ǫc)|ψc〉〈ψc| which

is a repulsive potential operator (as ǫv > ǫc, making ǫv - ǫc positive), Eqn. (2.22) can be

written as

[TS + VPS] φ̃v = ǫvφ̃v (2.23)

The operator

VPS = VKS +
∑

c

(ǫv − ǫc)|ψc〉〈ψc| (2.24)

represents a weak attractive potential, denoting the balance between the attractive poten-

tial VKS and the repulsive potential VR, and is called a pseudopotential. The new states

φ̃v obey a single-particle equation with a modified potential, but have the same eigenval-

ues ǫv as the original valence state ψv and are called pseudo-wavefunctions. These new

valence states project out of the valence wavefunctions any overlap they have with the

core wavefunctions, thereby having zero overlap with the core states. In other wards,

through the pseudopotential formulation, we have created a new set of valence states,

which experience a weaker potential near the atomic nucleus, but the proper ionic po-

tential away from the core region. Since it is this region in which the valence electrons

interact to form bonds that hold the solid together, the pseudo-wavefunctions preserve all

the important physics relevant to the behaviour of the solid.

Since then several methods have been used to generate more accurate as well as more

efficient pseudo-potentials, keeping the basic principles same. In norm-conserving pseu-

dopotential [24], the all electron (AE) wave function is replaced by a soft nodeless pseudo

(PS) wave function, with the restriction to the PS wave function that within the chosen

core radius the norm of the PS wave function has to be the same with the AE wave function
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and outside the core radius both the wave functions are just identical. Good transferabil-

ity of constructed pseudopotential requires a core radius around the outermost maximum

of the AE wavefunction, because only then the charge distribution and moments of the

AE wavefunctions are well produced by the PS wavefunctions. Therefore, for elements

with strongly localized orbitals like first-row, 3d and rare-earth elements, the resulting

pseudopotentials require a large plane-wave basis set. To work around this, compromises

are often made by increasing the core radius significantly beyond the outermost maxi-

mum in the AE wave-function. But this is usually not a satisfactory solution because the

transferability is always adversely affected when the core radius is increased, and for any

new chemical environment, additional tests are required to establish the reliability of such

soft PS potentials. This was improved by Vanderbilt [25], where the norm-conservation

constraint was relaxed and localized atom centred augmentation charges were introduced

to make up the charge deficit. These augmentation charges are defined as the charge

density difference between the AE and the PS wavefunction, but for convenience, they

are pseudized to allow an efficient treatment of the augmentation charges on a regular

grid. Only for the augmentation charges, a small cutoff radius must be used to restore

the moments and the charge distribution of the AE wavefunction accurately.

The success of this approach is partly hampered by rather difficult construction of the

pseudopotential. Later Blöchl [26] has developed the projector-augmented- wave (PAW)

method, which combines idea from the LAPW method with the plane wave pseudopoten-

tial approach, and finally turns out computationally elegant, transferable and accurate

method for electronic structure calculation of transition metals and oxides. Below we

have outlined the idea behind the PAW method.

In the PAW method, the AE wavefunction Ψn (which is a full one-electron Kohn-Sham

wavefunction) is derived from the PS wavefunction |Ψ̃n〉 by means of a linear transforma-

tion:

|Ψn〉 = |Ψ̃n〉 +
∑

i

(|φi〉 − |φ̃i〉)〈p̃i|Ψ̃n〉 (2.25)

The index i is a shorthand for the atomic site R, the angular momentum numbers L =

(l,m) and an additional index k referring to the reference energy ǫkl. The all electron

partial waves φi are the solutions of the radial Schrödinger equation for the isolated

atom, and the PS partial waves φ̃i are equivalent to the AE partial waves outside a core
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radius rl
c and match with value and derivative at rl

c. The core radius rl
c is usually chosen

approximately around half the nearest-neighbour distance. The projector function p̃i for

each PS partial wave localized within the core radius, obeys the relation 〈p̃i|φ̃i〉 = δij .

Starting from Eqn. (2.25), it is possible to show that in the PAW method, the AE charge

density is given by

ρ(r) = ρ̃(r) + ρ1(r) − ρ̃1(r) (2.26)

where ρ̃ is the soft pseudo-charge density calculated directly from the pseudo wavefunc-

tions on a plane wave grid:

ρ̃(r) =
∑

n

fn〈Ψ̃n|r〉〈r|Ψ̃n〉 (2.27)

The on-site charge densities ρ1 and ρ̃1 are treated on radial support grids localized around

each atom. They are defined as

ρ1(r) =
∑

n,(ij)

fn〈Ψ̃n|p̃i〉〈φi|r〉〈r|φj〉〈p̃j|Ψ̃n〉 (2.28)

and

ρ̃1(r) =
∑

n,(ij)

fn〈Ψ̃n|p̃i〉〈φ̃i|r〉〈r|φ̃j〉〈p̃j|Ψ̃n〉 (2.29)

It is to be noted that the charge density ρ̃1 is exactly the same as ρ̃ within the augmentation

spheres around each atom. In PAW approach, an additional density, called compensation

charge density is added to both auxiliary densities ρ̃ and ρ̃1 so that the multi-pole moments

of the terms ρ1(r) - ρ̃1(r) in Eqn. (2.26) vanish. Thus the electrostatic potential due

to these terms vanishes outside the augmentation spheres around each atom, just as is

accomplished in LAPW method. Like density, the energy can also be written as a sum of

three terms and by functional derivatives of the total energy, one can derive the expressions

of Kohn-Sham equations.

Linear Muffin-Tin Orbital (LMTO) method

The method relies on the muffin-tin approximation of the potential which divides the space

into atom-centred muffin-tin spheres and the interstitial. While the solution of Schrödinger

equation inside the spherically symmetric muffin-tin sphere is partial waves, that in the

interstitial is plane waves which can be expanded in terms of spherical Neumann and
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Bessel functions. The basis is constructed by joining these two solutions at the muffin-

tin sphere boundaries continuously and smoothly. Finally the LMTO basis is derived by

linearizing this energy dependent basis set. In the further step towards simplification,

the method relies on atomic sphere approximation (ASA) which replaces the muffin-tin

spheres by space-filling atomic spheres, called Wigner-Seitz (WS) spheres. With the

above mentioned approximations, the information needed to set up the Hamiltonian can

be divided into two independent parts. The first part contains the structure matrix which

depends only on the structure and the positions of the atoms and not on the type of

atoms occupying the sites. The second part of the information depends on the solution of

the Schrödinger equation inside each inequivalent WS sphere with appropriate boundary

conditions. The second part yields the so-called potential parameters for each site.

Within the ASA, the LMTO basis functions have the following form:

χα
RL(rR) = φRL(rR) +

∑

R′L′

φ̇α
R′L′(r′R)hα

R′L′,RL (2.30)

where L denotes collective angular momentum index (lm). Atomic sites are given by the

position vectors R with rR = r - R. φ is a product of a spherical harmonic and the

solution φνRL(|rR|) to the radial equation, i.e. the partial waves inside the sphere centred

at R for a certain energy ǫνRL which is the energy of linearization. The functions φ̇α are

the linear combinations of the φ’s and their energy derivatives φ̇. The actual choice of

how the linear combination is made determines the basis i.e. the label α. The functions

φ are normalized inside the spheres to which they are associated, α and φ̇ are orthogonal

and they vanish, by definition outside their own sphere. The matrix hα is given by

hα = Cα − ǫν + (∆α)1/2Sα(∆α)1/2 (2.31)

where C and ∆ are the diagonal potential matrices and S is the structure matrix depend-

ing on the representation and the geometrical arrangement of the atomic sites.

Although the LMTO method has been highly successful in doing electronic structure cal-

culation with nominal computational cost, it has some disadvantages, like :

(i) The basis is complete to (ǫ - ǫν) (i.e, 1st order) inside the sphere while it is complete

to (ǫ - ǫν)
0 = 1 (i.e, 0th order) in the interstitial which is inconsistent. It can be made

consistent by removing the interstitial region by ASA.
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(ii) The expansion of the Hamiltonian H in the orthogonal representation as a power

series in the two centred tight-binding Hamiltonian h :

〈χ̃|H|χ̃〉 = ǫν + h− hoh+ . . . (2.32)

is obtained only within ASA and excluding downfolding.

All these disadvantages have been taken into account in NMTO method, which provides

a more consistent formalism, treats the interstitial region accurately and goes beyond the

linear approximation. The primary features of this method are : (i) it still has a muffin-

tin potential, (ii) it still uses the partial waves, φ within the atomic spheres, (iii) instead

of Neumann function it uses screened spherical waves (SSWs) in the interstitial region,

(iv) out of partial waves and SSWs it defines the kinked partial waves (KPWs), (v) it

constructs energy-independent NMTOs, which are superpositions of KPWs evaluated at

N+1 energy points. We will discuss more about this method in chapter 3.

2.3.2 Real space recursion method

Besides clusters, we have also studied in this thesis, the conductance of 1D atomic chain.

Our formalism for this study is based on real space vector recursion technique which is the

generalized version of scalar recursion technique. Here we will discuss the scalar recursion

technique briefly. The real-space based scalar recursion method (Haydock, Heine and

Kelly, 1972) is a very convenient approach for the determination of the eigen-solutions of

matrices, especially those of very large rank and sparse character (i.e. with many matrix

elements equal to zero). In the field of electronic structure calculations, the recursion

method has been originally introduced in connection with local basis representation of the

electronic states in solids. Since the LMTO method gives the Hamiltonian in the tight-

binding form [Eqn. (2.32)], the recursion method is therefore suitably used in connection

with TB-LMTO basis sets. The underlying principle of the recursion method is very

simple and very general at the same time. Consider a quantum system, described by

Hamiltonian H which may be of tight-binding form and a number N (arbitrarily large)

of orthonormal basis states {|i〉}(i = 1, 2, . . . , N). Starting from any given state |n0〉
belonging to the space spanned by {|i〉}, the recursion method maps the original basis set

{|i〉} into a new set of orthonormal basis set {|n〉〉} such that the Hamiltonian in this new
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Figure 2.1: Recursive reduction of a square lattice to an equivalent linear chain.

representation becomes a tridiagonal matrix. A tridiagonal matrix is equivalent to a one-

dimensional chain. So recursion method is nothing but a change of basis which converts

the original quantum system into an effective one-dimensional chain representation.

To illustrate the procedure, let us take an example of a square lattice with the starting

state of the new basis |1〉〉 at site 1 i.e. |1〉. The other members are then generated using

the following recursion formula:

|2〉〉 = H|1〉〉 − a1|1〉〉
|n+ 1〉〉 = H|n〉〉 − an|n〉〉 − b2n|n− 1〉〉 n ≥ 3 (2.33)

Using Eqn. (2.33), we immediately get :

an =
〈〈n|H|n〉〉
〈〈n|n〉〉 and b2n =

〈〈n|n〉〉
〈〈n− 1|n− 1〉〉 (2.34)

Fig. 2.1 shows schematically the recursive reduction of a square lattice where the

dotted shells represent the consecutive recursion steps.

Once the linear transformation has been achieved, we can write expression for the Green
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function matrix elements; in particular the matrix element G11(E) of the Green’s function

is given by the continued fraction expression

G11(E) = 〈〈1| 1

E −H
|1〉〉 =

b21

E − a1 −
b22

E − a2 −
b33

E − a3 − . . .

(2.35)

Notice that the expansion of the Green function is possible only because of the tridiagonal

structure of the Hamiltonian. Once the Green function is obtained, one can calculate any

physically measurable quantity related to electronic properties of a solid. For example,

using G11(E), the local density of states projected on |1〉 of the Hamiltonian operator H

can be obtained as

ρ0(E) = −1

π
lim

ǫ→0+
G11(E + iǫ) (2.36)

where ǫ is an infinitesimal positive quantity.

Vector recursion is the generalized version of the recursion technique which transforms

the system Hamiltonian into block-tridiagonal form where each matrix element is itself

a matrix. This transformation allows calculation of the scattering matrix by means of

a stable three-term recurrence and a straightforward matching of boundary conditions.

We will discuss the vector recursion technique in detail in chapter 7, where we have

implemented it to study the electrical transport properties of 1D atomic chain connected

with 3D leads.
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Chapter 3

Relative stability of zinc-blende and wurtzite

structure in bulk CdX (X = S, Se, Te) : a Wannier

function study

Tetrahedrally co-ordinated binary octet semiconductors are reported to crystallize both in

cubic ZB and hexagonal WZ structures at ambient temperature and pressure. The relative

stability of these structures and its origin have been investigated in terms of model as well

as first principles calculations in past. The common understanding arising out of these

studies is that more ionic solids prefer WZ structure, while more covalent solids stabilize

in ZB structure. However, the search is still on for a microscopic understanding behind

this general trend. With the help of our work in this chapter, we have been able to provide

a microscopic detail of the relative stability in the bulk CdX (X = S, Se, Te) series using

Wannier function analysis constructed out the of N-th order muffin-tin orbital technique.

The applied methodology brings out the correct experimental trend within this series.1

3.1 Introduction

Tetrahedrally coordinated binary semiconductors of ANB8−N type having total of eight

valence electrons are compounds of great technological importance [1, 2]. They have been

widely studied both theoretically and experimentally [3]-[5]. An interesting aspect of

1This chapter is based on the following paper:

Soumendu Datta, Tanusri Saha-Dasgupta and D. D. Sarma, Wannier function Study of Relative Sta-

bility of Zinc-blende and Wurtzite Structure in the CdX (X = S, Se, Te) series, J. Phys. : Condens.

Mattter, 20, 445217 (2008).
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these compounds is that they can belong to either in cubic or in hexagonal symmetry,

namely in ZB or in WZ structure. The difference between the two structures is subtle,

both being of tetrahedral coordination, and also the associated total energy difference is

small, of the order of few meV/atom. These particular aspects have made the ZB vs WZ

structural stability issue a topic of significant interest that have been discussed in literature

both in terms of model calculations as well as in terms of first principles calculations

[6]-[16]. Phillips and Van Vechten [8] first gave a well defined prescription in terms of

ionicity to predict the crystalline phase in binary octet semiconductors of ANB8−N type,

with the help of the dielectric theory. While their theory nicely described the transition

from four-fold to six-fold coordination and possibly also to eight-fold coordination, it

was not able to distinguish clearly between structures having the same coordination. P.

Lawaetz [10] investigated the stability of WZ structure more closely. Taking into account

the short-range elastic forces and long-range Coulomb forces, he correlated the ZB vs

WZ stability with the deviation of the axial ratio c/a from the ideal value, which was

further related with a structure-independent charge parameter. However, the results were

not fully satisfactory because of limited knowledge about the long-range Coulomb-effects

in partially ionic materials. Tomonori [14] achieved some success in systematization of

polytypism by relating the energy difference of ZB and WZ phases to a simple empirical

formula. Christensen et al [15] studied the structural phase stability of 34 elemental and

compound semiconductors from first principles electronic structure calculations which

involved mostly four-fold to six-fold coordination transitions. They studied the chemical

trends by calculating the valence charge densities using LMTO based localized basis sets.

Their calculated ionicities from tight-binding representation of LMTO Hamiltonian, gave

better chemical trend than Phillips value. Recently, the ZB - WZ polytypism in binary

octet semiconductors has been studied by Yeh et al [16] in terms of quantum mechanically

defined atomic-orbital radii. They showed a linear scaling between the ZB - WZ energy

difference and atomistic orbital radii and successfully predicted the structural trends in

most of the octet compounds, except some few cases. However, this study was mainly

based on atomistic characteristics and not directly related with the atomic arrangement

of both the phases. The general understanding that emerged out of all these calculations

is that it is the competition between the covalency and the ionicity effects that determines
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the relative stability of ZB vs WZ structures, with covalency favouring ZB structure and

ionicity favouring WZ structure.

Experimentally, the stable crystal phase of CdS is hexagonal WZ structure [17] (see

also Fig. 1.2). For CdSe, ZB is the stable low temperature phase and above a critical

temperature, it transforms to WZ structure [18]. On the other hand, CdTe always sta-

bilizes in cubic ZB structure [19]. However, there is a few indication of metastable WZ

growth for CdTe in some special situation [20]. In the present work, we revisited the issue

of relative stability of ZB and WZ in the CdX series, with X = S, Se, Te using NMTO

technique [21] within the framework of DFT. In particular, we employed the “direct gener-

ation of Wannier-like orbitals” feature of NMTO technique for obtaining the microscopic

understanding in this context.

3.2 Crystal structure

The ZB structure consists of two interpenetrating face centred cubic sub-lattices, one

of atom A, the other of atom B, displaced from each other along the body diagonal by

a/4, a being the lattice constant for the ZB structure. On the other hand, an ideal

WZ structure consists of two interpenetrating hexagonal closed packed sublattices, one

of atom A, the other of atom B, displaced from each other by 3c/16 along the c-axis.

These result into two different stacking sequences: ABCABC. . . along [111] direction for

ZB and ABAB. . . along c-axis for WZ. The ZB structure corresponds to the staggered

conformation of atomic arrangement along [111] body diagonal, while the WZ structure

corresponds to the eclipsed conformation as seen looking down the c-axis. The nearest

neighbour (tetrahedral bond) arrangements in the ZB structure and in the ideal WZ

structure are identical. The main difference starts to come in the relative position of 3rd

nearest neighbours and beyond. Also the arrangement of the distant atoms along the four

different tetrahedral bonds are different for a WZ structure. The structural differences

between these two phases have been shown in Fig. 3.1.

The lower symmetry of the WZ structure allows for a distortion with the c/a ratio

deviating from the ideal value of
√

8
3

= 1.633. A further kind of distortion, that is possible

in the hexagonal structure and forbidden in the cubic, is that the two interpenetrating
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Figure 3.1: (a) and (b) show the crystal structures in WZ and ZB symmetries. Two

different coloured atoms denote cation and anion. (c) WZ structure shows the ABAB. . .

stacking of atoms, while (d) ZB structure shows the ABCABC. . . stacking. Eclipsed

and staggered conformation of atoms along c-axis in WZ structure and along [111] body

diagonal in ZB structure have been shown in (e) and (f), respectively.
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sublattices are slightly displaced from their ideal positions. In order to capture these

distortions, it is necessary to define another internal parameter “u”, which is the nearest

neighbour distance along c-axis, in unit of c. The value u in the ideal WZ structure is 3/8

= 0.375. Deviation of u from its ideal value gives rise to a dipole at the centre of each

tetrahedron, containing an atom of opposite kind, the magnitude of which depends upon

∆u [∆u = u - 0.375] and the ionicity of the chemical bonds. This effect also lowers the

ionization energy. The structural parameters of CdS, CdSe and CdTe used in the present

calculation are listed in Table 3.1.

Table 3.1: Structural parameters of ZB and WZ phases for CdX (X = S, Se, Te) series.

Lattice parameters have been taken from Ref. [16] for both ZB and WZ phases of CdS,

from Ref. [22] for ZB CdSe, from Ref. [23] for WZ phase of CdSe, from Ref. [19] for ZB

CdTe and from Ref. [20] for WZ CdTe.

Compounds WZ ZB

a (Å) c/a u ∆(c/a) ∆u a (Å)

CdS 4.121 1.621 0.377 -0.012 0.002 5.811

CdSe 4.299 1.631 0.376 -0.002 0.001 6.077

CdTe 4.57 1.637 0.375 0.004 0.000 6.492

It shows that the deviation ∆(c/a) [∆ (c/a) = c/a - 1.633] is negative and largest for

CdS, while it is positive for CdTe. The deviation from the ideal c/a ratio is tiny for CdSe.

The deviation ∆u is found to be opposite in sign to that of ∆(c/a). A part of the deviation

∆u is expected to come due to nearest neighbour bond bending or bond stretching caused

by ∆(c/a). The limits on this part, as calculated by Keffer and Portis [7] for AlN, are

u = 0.380 to maintain equal nearest neighbour bond lengths and u = 0.372 to maintain

equal four tetrahedral angles. However, the measured value of u for AlN is 0.385 [7].

This means there must be additional contribution in the distortion of u from ideal value,

which is coming from the long-range Coulomb interaction. The NMTO technique based

on full self-consistent DFT calculations includes both the effect of short-range as well as

long-range interaction in providing a complete understanding.
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3.3 Total energy calculations

In order to check the relative stability of the ZB and WZ structures of the CdS, CdSe and

CdTe, we carried out total energy calculations using the energetically accurate pseudo-

potential basis set. The calculations have been performed with PAW pseudopotential

[24] and GGA exchange-correlation functionals as implemented in VASP package. The

wavefunctions are expanded in the plane wave basis set with a kinetic energy cut-off of

280 eV which gives convergence of total energy sufficient to discuss the relative stability of

various phases. The calculations have been carried out with a k-space grid of 11×11×11.

The obtained total energies and the band gaps are listed in Table 3.2. As found, the

total energy differences are indeed very tiny; of the order of few meV. Our calculations

correctly show that CdS to be stable in WZ phase and CdTe to be stable in ZB phase.

CdSe, which is considered as a borderline case, is found to be stable in ZB phase in

agreement with the published results [16]. The band gaps in WZ and ZB structures, both

being direct band gaps for CdS, CdSe and CdTe are similar for a given compound. As

expected, the calculated band gaps are underestimated due to the overbinding problem

related with local density approximation of exchange-correlation functional. It is found

that the band gap decreases monotonically in moving from CdS to CdTe in both ZB and

WZ symmetries. This monotonic decrease in band gap indicates the enhanced metallicity

across the CdS-CdSe-CdTe series which points to CdTe being more covalent compared to

CdS.

3.4 Calculation of ionicity

As already pointed out, the relative stability between ZB and WZ phases of ANB8−N

semiconductors is dictated by the competition between the covalent bonding and the

electrostatic energy given by the difference between the cation and anion energy levels.

For a homopolar semiconductors like Si, it is only the first term that survives. For

a tetrahedrally coordinated semiconductor, it is most natural to think in terms of sp3

hybrids. Considering the sp3 hybrid energy as Esp3 = (Es + 3Ep)/4 the energy level

separation between cation and anion is given by ∆Esp3 = Ec
sp3 − Ea

sp3 ; where c and a

denote cation and anion respectively. The hybridization contribution on the other hand
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Table 3.2: Total energy per formula, energy difference ∆E = E(ZB) - E(WZ) and band

gaps. + ve sign of ∆E indicates WZ is more stable than ZB and vice versa. The numbers

within the parenthesis in the columns of band gap, correspond to their experimental values

taken from Ref. [25].

Compounds Energy(eV/formula) ∆E (meV) Band gap(eV)

ZB WZ ZB WZ

CdS -5.2930 -5.2972 4.2 1.15 (2.55) 1.24 (2.58)

CdSe -4.7630 -4.7601 -2.9 0.97(1.90) 0.99(1.83)

CdTe -4.1934 -4.1729 -20.5 0.75(1.60) 0.83(1.60)

is related to the hopping integral between the cation and anion sp3 hybrids. It is given by

h = 1
4

〈
sa + pa

x + pa
y + pa

z |H|sc − pc
x − pc

y − pc
z

〉
considering the [111] bond of ZB structure

and h = 1
2
〈sa + pa

z |H|sc − pc
z〉 considering the [001] bond of WZ structure where H is the

tight binding Hamiltonian in the sp basis of cation and anion. The ionicity is then defined

as [15]

fi =
(∆Esp3)2

(∆Esp3)2 + (2h)2
(3.1)

In order to extract the energy level separation and the hopping interaction, we em-

ployed the NMTO-downfolding technique. In this method, a basis set of localized orbitals

is constructed from the exact scattering solutions (partial waves and Hankel functions) for

a superposition of short-ranged spherically-symmetric potential wells, a so called muffin-

tin approximation to the potential. The basis set is constructed from the scattering solu-

tions at a mesh of energies, ǫ0, ǫ1, . . . , ǫN . At those energies, the set provides the exact so-

lutions, while at other energies, E, the error is proportional to (E−ǫ0)(E−ǫ1) . . . (E−ǫN ).

The basis set of NMTOs is therefore selective in energy. Moreover, each NMTO satis-

fies a specific boundary condition which gives it a specific orbital character and makes it

localized. The NMTO basis set due to its energy selective character is flexible and can

be chosen as minimal via the downfolding procedure. The downfolding procedure is an

energy selection procedure which selectively picks up few bands of interest out of the LDA
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all band calculation by integrating out degrees of freedom that are not of interest, called

the passive channels and retaining few degrees of freedom, called active channels. The

downfolded NMTO set spans only the selected set of bands with as few basis functions as

there are bands. For the isolated set of selected bands the NMTO set spans the Hilbert

space of the Wannier functions, that is, the orthonormalized NMTOs are the Wannier

functions. The Wannier orbitals are therefore generated directly in this method, which

may be contrasted with the techniques where Wannier functions are generated out of the

calculated Bloch functions as a post processing step [26]. The downfolded Hamiltonian

in the Wannier basis provides the estimates of on site energies and the hopping integrals.

In order to compute the ionicity parameter defined in Eqn. (3.1), the NMTO calcula-

tions have been carried out with Cd(spd) and X(sp) basis. NMTO calculations being not

yet implemented in self-consistent form, the self consistent calculations have been carried

out in the LMTO method. The self consistent MT potential out of these LMTO calcu-

lations has been used for the constructions of NMTOs, which in the present case is the

standard LMTO all-electron CdXEE′ atomic spheres potential for the ZB structure and

Cd2X2E2E
′
2 for the WZ structure. E and E ′ are two different empty spheres used to fill

the space. The calculated estimates of ∆Esp3 , hopping integral h and ionicity parameter

fi for CdX series are listed in Table 3.3. The NMTO approach successfully brings out the

right trend within the CdX series both for the ZB and the WZ structures, i.e CdS has

the maximum ionicity and CdTe has the least. For comparison, the results of previous

calculations by Christensen et al [15] using the tight-binding LMTO approach and that

by Phillips [4] using dielectric theory are also listed. As it is found, while NMTO could

bring out the right trend within the fine differences, the two previous approaches could

not capture it properly. For example, both in Ref. [15] and in Ref. [4] (see Table 3.3) the

ionicity of CdSe turned out to be higher than that in CdS. Ref. [4] gets CdTe to be of

even higher ionicity. We have also compared our results with the Pauling ionicities which

are based on empirical heats of formation and are calculated for ANB8−N compounds

from the electronegativity difference via

fi(Pa) = 1 − N

M
exp(−|XA −XB|2

4
)

where |XA − XB| is the electronegativity difference between elements A and B, and M
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is the coordination number. Pauling ionicities have right trend and these values are

comparable with our calculated values.

Table 3.3: Covalent gap ∆Esp3 , hopping term Eh = -2h and ionicity fi for the CdX series

in ZB and WZ structure. fi(C) means calculated value of ionicity by Christensen et al

from Ref. [15], fi(Ph) that of Phillips taken from Ref. [4] and fi(Pa) that of Pauling

taken from Ref. [5].

Compounds ∆Esp3 (eV) Eh = -2h (eV) fi fi(C) fi(Ph) fi(Pa)

ZB WZ ZB WZ ZB WZ

CdS 7.13 7.17 6.37 6.29 0.556 0.565 0.794 0.685 0.59

CdSe 6.70 6.69 6.16 6.04 0.542 0.551 0.841 0.699 0.58

CdTe 5.36 5.45 5.79 5.74 0.462 0.475 0.739 0.717 0.52

3.5 Microscopic understanding in terms of calculated Wannier

functions

In order to gain further insights, we went a step ahead and constructed the truly minimal

NMTO sets with the sp-orbitals placed exclusively on the anion (X) site and downfolded

all the orbitals at the cation (Cd) site, except the cation d orbitals. This gives rise to the

basis with only 4 sp-orbitals out of 8 sp-orbitals in the ZB unit cell and 8 sp-orbitals out

of 16 sp-orbitals in the WZ unit cell. The energy points are chosen in the way so as to

span only the valence bands. The comparison of the downfolded valence-only bands and

the full band structure can be made as good as possible by making the energy mesh finer

and finer. The plot shown in Fig. 3.2 for CdS with the choice of 4 energy points already

shows the downfolded bands to be indistinguishable from the full band structure in the

scale of the plot. Similar agreements are found also for CdSe and CdTe.

Fig. 3.3 shows the plot of the orthonormalized p-NMTO (N = 3) centred at the anion

site and pointing to the neighbouring Cd site along the [111] direction for the ZB struc-

ture and [001] direction for the WZ structure. As it is clearly seen, the red lobe at the
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Figure 3.2: Downfolded bands (thick line) with the basis sets where sp-MTOs are on S

atom and d-MTOs are on Cd atom, are compared with NMTO all bands (thin line) both

in ZB (left) and WZ (right) structure of CdS. The energy mesh for downfolding have also

been shown.

left-hand side which is a mark of the covalency effect, systematically increases in moving

from S to Se to Te. Had it been plotted for the case of homopolar system like Si which is a

perfectly covalent compound, the plot would have been perfectly symmetric with the red

lobes being symmetric between the left hand side and the right hand side. These plots

reconfirm the conclusion that the ionicity decreases and the covalency increases across the

CdX series.

Fig. 3.4 shows the plots of directed p-NMTO same as in Fig. 3.3 but for four different

tetrahedral bond directions of WZ and ZB structure for CdS. While the four bond-centred

p-NMTOs look identical for ZB structure, the bond-centred p-NMTO directed along the

[001] direction of the WZ structure, looks different from the rest of the three. The dif-

ference primarily comes from the tail sitting at Cd position at c(1 − u) measured from

the central anion position at X(0, 0, 0) along the [001] axis (see Fig. 3.5). There is no

equivalent neighbouring atom along the other three directions.

In order to understand this effect, we have carried out model calculations where ∆ (c/a)

ratios have been made -0.1, -0.05 and 0.1. The corresponding u parameter in each case has

been obtained by total energy minimization, fixing the lattice parameters. The deviation

in u, ∆u is found to roughly obey the relationship with ∆(c/a) as ∆u = -
√

3
128
ξ∆ (c/a)

where ξ, the bond-bending parameter, is 2.0, as given by Lawaetz [10]. We computed the

ionicity parameter fi for each of the model systems by NMTO downfolding technique. In
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Figure 3.3: The contour plots show the anion p[111] MTO in ZB structure (left panels)

and anion p[001] MTO in WZ structure (right panels) of CdX (X = S, Se, Te). The top

most panels correspond to CdS and the bottom most to CdTe. In each case, 35 contours

have been drawn in the range -0.15 to 0.15 electrons/Bohr3. From top to bottom, the

ionicity decreases and the covalency increases.
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c

CdS − zincblende CdS − wurtzite

Figure 3.4: The contour plots show the p-MTO of S along the four nearest neighbour

tetrahedral directions in ZB structure (left panels; from top to bottom they are p[111],

p[11̄1̄], p[1̄11̄], p[1̄1̄1]) and in WZ structure (right panels; from top to bottom they are

p[001], p[1, 0, u√
3
c/a], p[1

2
,-

√
3

2
, - 2√

3
uc/a], p[1

2
,
√

3
2

, - 2√
3
uc/a] ) of CdS. The contours chosen

are same as in Fig. 3.3.



Chapter 3. Relative stability of zinc-blende and wurtzite structures in bulk CdX 45

X  for  anion

(−5/4,−5/4,−5/4)

Cd

(0,0,0)(−1/4,−1/4,−1/4) (3/4,3/4,3/4) (1,1,1) (7/4,7/4,7/4) (2,2,2)(−1,−1,−1)

(b)

XXCdXX
[111] of zincblende

Cd Cd

(a)

(0,0,0) (0,0,c(1−u)) (0,0,c) (0,0,c(2−u)) (0,0,2c)(0,0,−uc)(0,0,−c(1+u)) (0,0,−c)(0,0,−2c)

[001] of wurtzite
CdCdX X X Cd CdX X

−

c

Figure 3.5: (a) Positions of atoms along [001] direction of wurtzite structure, (b) positions

of atoms in unit of lattice constant along [111] direction of zinc-blende structure.

Table 3.4 we list the ionicity parameter for the model WZ systems, together with actual

CdTe case. Evidently, the negative deviation from ideal (c/a) ratio makes the compound

more ionic as pointed out previously. Changing ∆ (c/a) ratio from negative to positive

passing through the ideal ∆ (c/a) ratio, the ionicity decreases and covalency increases.

This is in agreement with the structural parameters of CdS, CdSe and CdTe. CdS being

the most ionic among the three, shows the largest negative deviation in (c/a). (c/a) ratio

for CdSe is close to ideal, while deviation in (c/a) ratio for CdTe becomes positive.

Table 3.4: Covalent gap ∆Esp3, hopping term Eh = -2h and ionicity fi for model CdTe

in WZ structure, with ∆ (c/a) and u as given in the first column.

CdTe ∆Esp3 (eV) Eh = -2h (eV) fi
∆ (c/a) = -0.100 and u = 0.4044 5.49 5.33 0.515

∆ (c/a) = -0.050 and u = 0.3903 5.48 5.57 0.491

∆ (c/a) = +0.004 and u = 0.375 5.45 5.73 0.475

∆ (c/a) = +0.100 and u = 0.3432 5.45 6.13 0.441

In Fig. 3.6, we show the downfolded p-NMTO for the model WZ systems together

with actual WZ CdTe system along [001] direction and one of the three other directions,
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Te − p[0, 0, 1] ]Te − p[ 1, 0, 
Model CdTe in wurtzite structure

Figure 3.6: The above contour plots show the p-MTO of Te in WZ structure of model

CdTe. The left panels correspond to p[001] and right panels correspond to p[1, 0,

(u/
√

3)c/a]. From top to bottom ionicity decreases and covalency increases and dis-

tribution becomes more isotropic. The contours chosen are same as in Fig. 3.3.
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namely [1, 0, (u/
√

3)(c/a) ]. As it is evident, changing ∆ (c/a) from negative to positive

makes the two p-NMTOs directed along the vertical [001] bond and one of the other di-

rections, looking alike, diminishing the tail effect sitting at Cd [0, 0, c(1 - u)] site. This is

driven by the covalency effect which prefers an isotropic arrangement. However, it can-

not be completely achieved within a hexagonal symmetry, a compound with nearly ideal

(c/a) or positive ∆ (c/a) ratio therefore prefers to stabilize in ZB symmetry, satisfying

the isotropic distribution completely.

In order to have quantitative estimates of ionicity based on truly minimal Wannier func-

tions, we have also computed the shift of the centre of gravity of the Wannier function

from the bond centre, introduced by Abu-Farsakh et al [27] as β = r/d; where r is the

distance between the centre of the Wannier function and the position of the cation of

the associated bond, and d is the bond length. Table 3.5 contains our calculated values

of bond ionicities β for the CdX series in both ZB and WZ structures. The calculated

bond ionicity gradually decreases and shows the right trend in the CdX series, as obtained

using Eqn. (3.1). We have also compared our results with those of Abu-Farsakh et al [27]

calculated for ZB structures. However, their calculated β fails to prove CdS to be more

ionic than CdSe.

Table 3.5: Bond ionicity β for CdX series in both ZB and WZ structure. Previously

reported values of β by Abu-Farsakh et al [27] for ZB structure of CdS and CdSe are also

listed.

Compounds Present Previous

(ZB)

ZB WZ

CdS 0.745 0.745 0.740

CdSe 0.739 0.743 0.743

CdTe 0.708 0.714 . . .
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3.6 Summary and Conclusions

Using NMTO-downfolding technique we have revisited the problem of ZB vs WZ symme-

try in case of ANB8−N semiconductors. In particular, we have considered the CdX series

with X = S, Se, Te. Our computed ionicity factors using accurate NMTO-downfolding suc-

cessfully bring out the right trend within the CdX series - CdS being most ionic stabilizes

in WZ symmetry while CdSe and CdTe being more covalent stabilizes in ZB symmetry.

Bond ionicity measurement from the displacement of the centre of the Wannier function

from the bond centre also shows the right trend. Our NMTO constructed Wannier func-

tions corresponding to only valence bands provide nice demonstration of this fact. The

tendency towards ZB stability is governed by the covalency which prefers isotropic nature

of the tetrahedral bonds.
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Chapter 4

First principles study of structural stability and

electronic structure of CdS nano-clusters

While the structural stability of binary octet semiconductors in bulk phase is well studied

(see chapter 3), the situation as the system size is reduced to nano regime is very contro-

versial. The interesting fact about semiconductor nano-particles is that their properties

are very much dependent on their size, shape, stoichiometry, nature of passivator used

etc. In this chapter, we have carried out a systematic first principles study to investigate

the influence of each of the above mentioned factors on structural stability and optical

band gap of CdS nano-clusters, for which a number of experimental study are available.1

4.1 Introduction

In the context of semiconducting nano-clusters, it has been observed that the band gap can

be systematically changed over a wide range by tuning the particle size. This tunability

of the band gap has opened up immense technological possibilities in diverse fields such as

solar cells [1], electroluminescent devices [2] and possible electronic devices. The situation,

1This chapter is based on the following papers:

• Soumendu Datta, Mukul Kabir, Tanusri Saha-Dasgupta and D. D. Sarma,First principle study

of structural stability and electronic structure of CdS nano-clusters, J. Phys. Chem. C, 112, 8206

(2008)

• Soumendu Datta, Mukul Kabir, Tanusri Saha-Dasgupta and D. D. Sarma, Study of structural

stability and electronic structure of non-stoichiometric CdS nano clusters from first principles, J.

Nanosci. and Nanotechnol., 9, 1-4 (2009)
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however, is complicated by the fact that the reduction in particle size seems to influence

the stable crystalline structure of one phase over the other, in a way that is very little

understood so far. Among various semiconductor nano-clusters, II-VI semiconductor

CdS has received a lot of attention, primarily due to the following facts : (i) CdS is a

direct gap semiconductor with rather large band gap of about 2.5 eV [3], (ii) quantum

confinement effect can be reached quite easily because of the large excitonic Bohr radius

≈ 3 nm [4], (iii) CdS can be synthesized experimentally rather easily in the size range

required for quantum confinement. Though WZ phase is slightly more stable than ZB

for bulk CdS, in nano regime, the reported experimental results are quite contradictory :

few indicates ZB as stable phase [5] while others in favour of WZ [6, 7] or admixture of

WZ and ZB [8]. The structural similarity between WZ and ZB and the associated small

differences in cohesive energies on the order of few tens of meV/atom make the situation

even more complex and also interesting. This is a crucial issue as band gap, effective

mass and other spectroscopic properties are very much dependent on its crystalline phase.

However, very little is known about the details of the experimental situation, e.g. the

stability of non-stoichiometric versus stoichiometric clusters, the role of passivator and

their influence on structural stability. Most of the theoretical works in this connection

involved studying band gap variation with size of the clusters, using efficient but less

accurate parametrized tight-binding approach [9]-[11]. Fig. 4.1 collects together the

experimental data [7],[12]-[19] as well as the theoretical results [11] based on tight-binding

calculation for band gap variation with size of CdS, CdSe and CdTe nano-clusters. It is

interesting to note from this figure that experimental data for CdSe and CdTe nano-

clusters shows monotonic variation with size, while they are quite scattered for CdS

nano-clusters, specially for smaller sizes which hints towards clusters having different

structures at different size regime. While such an interesting issue of relative stability

has drawn attention in past and have lead to theoretical analysis based on parametrized

tight-binding models [20, 21], to our knowledge no rigorous first-principles study exists

to address this issue. In absence of detail knowledge of the experimental scenario which

may also vary in different experimental conditions like synthesis route, we considered in

this chapter, the ab-initio theoretical study of stability of both stoichiometric and non-

stoichiometric clusters, naked as well as passivated. Our study shows that the relative



Chapter 4. Structural stability and electronic structure of CdS nanoclusters 53

B
an

d 
ga

p 
sh

ift
 (

eV
)

Cluster diameter (A)
0

Figure 4.1: Band gap shift as a function of cluster diameter (taken from Ref. [11]). Solid

dots fitted with solid line are results for sp3d5 TB model with cation-anion and anion-

anion interactions, dashed line for sp3s∗ nearest-neighbour TB-model and the dotted line

from the effective mass-approximation. Experimental data points:- CdS: open circles from

Ref. [7], open triangles from Ref. [12], stars from Ref. [13], open squares from Ref. [8];

CdSe: open squares from Ref. [14], open triangles from Ref. [15], stars from Ref. [16];

CdTe: open squares from Ref. [17], open triangles from Ref. [18], stars from Ref. [19]

.

stability between WZ-structured and ZB-structured clusters are governed by the details

of surface geometry and surface chemistry. In case of passivated clusters, we have also

studied the associated band gap as a function of cluster size which depending on specific

case also shows highly non-monotonic behaviour.

4.2 Building up of clusters

It is important to note that the stable phase seems to depend on the shape of the nano-

crystal [22], with majority of the experimental results being for spherical nano-clusters.

So we will focus on only spherical nano-particles. To generate nano-cluster of geometry

closest to spherical shape, we have built up the cluster shell by shell. To generate non-

stoichiometric clusters, we have taken the cluster centre on a Cd atom or S atom. In both

ZB and WZ structures, each Cd(S) atom is tetrahedrally surrounded by S(Cd) atoms in

its immediate neighbourhood [23]. Therefore, the surface of a non-stoichiometric cluster,

generated via above-mentioned prescription contains only single species of atoms : a

non-stoichiometric nano-cluster of even number of shells has same kind of atoms at the

surface and at the centre, while a non-stoichiometric nano-crystal with an odd number of
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Table 4.1: Number of atoms and diameters of both stoichiometric and non-stoichiometric

CdS clusters listed in order of increasing shell sizes for wurtzite structure. The corre-

sponding values for the zincblende structure are shown within parenthesis.

Shell Stoichiometric Non-stoichiometric

no. N diameter(Å) N diameter(Å)

1 8 (8) 7.57 (7.21) 5 (5) 6.47 (6.16)

2 26 (26) 11.21 (10.68) 17 (17) 9.73 (9.27)

3 58 (56) 14.65 (13.79) 42 (41) 13.15 (12.43)

4 114 (110) 18.35 (17.27) 86 (83) 16.70 (15.72)

5 192(184) 21.83(20.50) 153(147) 20.24(19.02)

6 306(294) 25.50(23.97) 249(239) 23.80(22.37)

shells has two dissimilar types of atoms at the centre and at the surface. On the other

hand, stoichiometric clusters are generated by putting the centre of the cluster on the

midpoint of Cd-S bond. In this case, each shell contains equal number of Cd atoms and S

atoms. Assuming spherical shapes, the diameters of ZB and WZ clusters of N atoms are

given by, dZB =
[

3N
4π

] 1

3 aZB and dWZ =
[

3N
2π
a2c

] 1

3 where a and c are the lattice constants

for wurtzite structure in the ab−plane and along the c−axis, respectively. In Table 4.1,

we list the cluster sizes in order of increasing shell numbers for both stoichiometric and

non-stoichiometric clusters.

4.3 Computational Details

We have carried out first principles electronic structure calculation within the framework

of DFT for the constructed nano-clusters. We have used PAW pseudopotential with plane-

wave basis and LDA for the exchange-correlation functional as implemented in VASP code.

The kinetic energy cut-off of the plane waves used in the calculations is 280 eV which gives

convergence of total energy sufficient to discuss the relative stability of various phases.

One useful parameter for comparing the stability of clusters is the cohesive energy per
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atom, defined as

Ec =

∑
βnβEβ −Etot∑

β nβ
(4.1)

Etot being the total energy of the cluster, Eβ being the energy of an isolated β atom (β

= Cd, S) and nβ = number of either type of atoms in the cluster. To check the validity

of our calculations, we computed the cohesive energy of bulk WZ and ZB CdS. Our

computed values of 2.653 eV/atom for the cohesive energy of WZ CdS and 9.7 meV/atom

for ZB - WZ energy difference agree well with published results [24]. Finite size cluster

calculations were carried out using the super-cell technique where a finite sized cluster is

positioned within a cubic super-cell. The cell dimension is set by the condition that each

repeated cluster in the periodic lattice is separated by a vacuum layer of at least 12 Å,

large enough so as to avoid the interaction between the clusters. To check the effect of

optimization of geometry in certain specific cases, we relaxed the surface atoms keeping

the core of the cluster fixed at ZB or WZ symmetry. This is a reasonable approach,

considering the fact that previous studies where relaxation has been carried out for the

entire cluster [20], showed that the structural relaxation was mostly confined to the surface

layer. Relaxations are performed using conjugate gradient and quasi-Newtonian methods

until all the force components are less than a threshold value 0.01 eV/Å. The reciprocal

space integration in all cases have been carried out with Γ point which is justified by the

large dimension of the cubic super-cell.

In order to study the role of passivator on the structural stability problem and the band

gap problem we have also considered ab-initio calculations in presence of passivators. The

surface of a naked semiconductor nano-particle often contains electronically active states

because of unsaturated surface bonds or dangling bond states. Surface passivation aims

to rebond these dangling bonds with some passivating agent while maintaining the local

charge neutrality of the whole system. In experiment, organic molecules are often used to

passivate nano-clusters. Owing to the complexities and the numerous degrees of freedom

of these passivation agents, it is not easy to do calculation with such passivators. To mimic

the role of passivator in ab-initio calculation, several simpler atomistic models have been

proposed [25, 26]. We will follow the recipe by Huang et al [26], which is applicable for

both stoichiometric as well as non-stoichiometric clusters. The proposed recipe requires

the use of two different kind of fictitious hydrogen atoms, H∗, to passivate the dangling
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bonds of CdS nano-clusters. To keep the passivated cluster neutral, one species of the

fictitious atoms is chosen to have a nuclear charge of 1+η and valance electron charge

of -(1+η), where η is a positive number. These atoms are bonded with Cd atoms. The

other species of atoms is chosen to have a nuclear charge of 1 - η and a valance electron

charge of -(1-η). These atoms are bonded to the S atoms. One needs to choose a value of

the fractional charge, η, that will optimally passivate the clusters, i.e., for all considered

sizes of the nano-clusters, the chosen η has to be same. This is found to be satisfied when

the gap becomes a maximum, as pointed out in Ref. [26]. The value of η for which gap

is maximum in the curve of gap vs η, is found to be 0.5 for II-VI semiconductor nano-

particles [26]. The bond lengths of H∗-Cd and H∗-S were determined from two model

systems, CdH∗
4 and SH∗

4 , in which bond lengths are fully optimized. The orientation of

H∗ around Cd and S is fixed in the same tetrahedral orientation as it is in ZB or WZ

structure.

4.4 Results

4.4.1 Energy stability

Unpassivated stoichiometric clusters

Fig. 4.2a shows the plot of the computed cohesive energy for unpassivated stoichiometric

clusters as a function of growing cluster size. The cohesive energy shows an overall increase

with the increase of cluster size for both the ZB and WZ structures due to the reduction

in the ratio of surface atoms to bulk atoms upon increasing cluster size. However, the

variation of cohesive energy is found to be non-monotonic with increasing size. Connecting

the cohesive energies of all the even shell clusters and that of odd shell clusters separately,

we find that the even shell clusters show higher cohesive energy (and therefore better

binding) than the odd shell clusters. Further to study the relative stability between the

ZB and WZ symmetry, we show in Fig. 4.2b, the cohesive energy difference between

WZ and ZB structures at each shell size. Whenever the quantity plotted is negative, it

implies that the cubic structure is more stable, while a positive value signals the hexagonal

structure as the stable phase. Our results, as plotted in Fig. 4.2b, show a general trend
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Figure 4.2: (a) Variation of cohesive energy with size for unpassivated stoichiometric

clusters shown by solid dots in ZB structure and by open triangles in WZ structure.

Chemical formula for each shell is given both in ZB (upper) and WZ (lower) structures.

(b) The cohesive energy difference between WZ and ZB structures for each shell size

in the case of unpassivated stoichiometric clusters. For a particular shell number, the

diameter of the ZB and WZ structured cluster differ a bit (cf. Table 4.1), therefore the

average diameter is shown in the x-axis of the plot. Same convention is followed in all

the following plots wherever applicable.

that from 3 shell onwards, the odd shell clusters stabilize in cubic ZB structure, while all

even shell clusters prefer to form in hexagonal WZ structure. To check the robustness of

our result with respect to structural relaxations of the surface atoms, we have also carried

out structural relaxation of the surface atoms for 3-shell and 4-shell stoichiometric nano-

clusters, keeping the position of core atoms fixed in ZB or WZ geometry, as explained in

section 4.3. Although the quantitative values change somewhat (by about 4-10 meV), the

trend remains the same, i.e. cluster with odd number of shells like 3-shell stabilizes in

cubic ZB structure and with even number of shells like 4-shell stabilizes in WZ structure.

This is in accordance with the finding by Joswig et al [20] that total energy upon relaxation

of such clusters reduces only little.

In order to understand the oscillating stability of the WZ and ZB structures and also

the higher stability of the even shell clusters compared to odd shell clusters in general,

we have analyzed the different contributions to the total energy. For finite sized cluster,

surface effect is important and the surface energy contribution to the total free energy
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plays the dominant role in determining the stable phases. In Fig. 4.3 we show the surface

energy variation as a function of the cluster size, where the surface energy per atom is

defined as,

Nǫbulk −Eclus

Ns

Eclus being the total cohesive energy of the cluster, N being the total number of atoms

in the cluster, Ns being the number of surface atoms, and ǫbulk being the bulk cohesive

energy per atom. We find that even shell clusters have lower surface energy and hence more

binding compared to odd shell clusters. The inset of Fig. 4.3 shows the surface energy

difference between WZ and ZB structures for each shell size. The positive (negative)

value of surface energy difference means WZ structure has higher (lower) surface energy

contribution than ZB structure and therefore WZ structure is less (more) stable. This

trend in surface energy variation and that of its difference is in accordance with the

trend found in the cohesive energy and its difference. Furthermore, to understand the
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Figure 4.3: Variation of surface energy with cluster size for ZB (solid dots) and WZ

(open triangles) structures for stoichiometric clusters. The inset shows the surface energy

difference (SED) between WZ and ZB structures.

non-monotonic behaviour in surface energy or cohesive energy as a function of cluster

size, we calculated the average number of dangling bonds per surface atom. The number
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of dangling bonds are the total number of unsaturated bonds, defined as
∑

i(4 − zi),

where zi is the coordination of i-th surface atom and the summation over i involves

summation over all surface atoms for a particular cluster size. We find that the average

number of dangling bonds are larger for odd shell clusters, giving rise to increased surface

states and hence larger surface energy contribution, thereby explaining the non-monotonic

behaviour of cohesive energy. While non-monotonic behaviour of cohesive energy has

been reported in theoretical calculations in past [20], such systematic behaviour and its

analysis by application of accurate first-principles calculations, to our knowledge has not

been demonstrated before. The analysis in terms of dangling bonds not only explains

the higher stability of the even shelled clusters, but also explains the relative stability of

WZ and ZB structured clusters since the difference of average number of dangling bonds

per surface atom between WZ and ZB structured clusters oscillates between positive

and negative values, being positive for odd shelled clusters and negative for even shelled

clusters. The difference is zero for 1 and 2-shelled clusters since the local co-ordination of

immediate neighbours is identical between ZB and WZ clusters and the difference shows

up only beyond 2nd nearest neighbour.
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Figure 4.4: Average number of dangling bonds (DB) per surface atom for unpassivated

stoichiometric clusters in ZB (solid dots) and WZ (open triangles) structures. The inset

shows difference between WZ and ZB structures.
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Unpassivated non-stoichiometric clusters

Most experimental condition favours synthesize of clusters of non-stoichiometric nature.

It is therefore important to consider clusters having non-stoichiometric composition. This

however leads to complication due to the fact that different cluster sizes have very different

Cd to S ratio, making the comparison of corresponding total energies a difficult task for

which no obvious way exists. However, for a given shell, the Cd to S ratio between ZB and

WZ structured clusters remains almost same [27] making the comparison of their cohesive

energy meaningful. In Fig. 4.5 we plot the difference in cohesive energy between the WZ

and ZB structured non-stoichiometric clusters as a function of increasing cluster size. Fig.

4.5a exhibits the cohesive energy differences for Cd centred clusters and Fig. 4.5b that of S

centred clusters. We note that unlike the case of stoichiometric clusters where the surface
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Figure 4.5: Cohesive energy difference between WZ and ZB structures for each shell size in

case of unpassivated non-stoichiometric clusters. (a) Solid dots connected with solid line

represent the results for Cd-centred clusters, while (b) the solid triangles connected with

solid line correspond to results for S-centred clusters. The consecutive layers of atoms

for 2 shell and 3 shell clusters have been shown for both Cd-centred case (spheres with

solid line) and S-centred case (spheres with dashed line). Note, by construction even shell

Cd(S)-centred cluster is Cd(S) terminated and odd shell Cd(S)-centred cluster is S(Cd)

terminated (see text).

composition always consists of equal number of S and Cd, for non-stoichiometric clusters
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the surface is formed exclusively by either S or Cd atoms. For Cd-centred clusters, the

even (odd) shell clusters are Cd (S) terminated, while it is reversed for S-centred clusters.

From the plot in Fig. 4.5, we find that non-monotonic behaviour of the relative stability

between WZ and ZB phase persists, on top it shows additional interesting aspect in the

sense that whether an even or odd shell cluster is formed in WZ or ZB symmetry depends

on the terminating layer. Focusing on clusters with shell numbers 4 and 5 in Fig. 4.5a, 4

shell cluster is found to be WZ structured and 5 shell clusters is found to be ZB structured

for Cd-centred cluster while moving to the Fig. 4.5b, the reverse trend is found for the S-

centred clusters. We note that a 4 (5) shell cluster is Cd (S) terminated in the former cases

and S (Cd) terminated in the latter cases. As expected this is driven by the oscillating

behaviour of the surface energy difference between WZ and ZB structures (shown in Fig.

4.6), which shows the similar trend as observed in case of the cohesive energy difference.

However unlike the case of stoichiometric clusters, this trend is not explained by the
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Figure 4.6: Variation of surface energy difference (SED) between WZ and ZB structures,

with increasing shell sizes in (a) Cd-centred (represented by solid dots) and (b) S-centred

(represented by solid triangles) non-stoichiometric clusters.

difference in the average number of dangling bonds per surface atom between WZ and

ZB structured clusters (shown in Fig. 4.7). The difference in average number of dangling

bonds predicts that the surface energy of a 4-shell ZB structured cluster to be higher

than that of a WZ structured cluster, hence a 4 shell cluster must form in WZ structure

which is indeed the case for 4 shell Cd-centred cluster but not for 4 shell S-centred cluster.

We therefore conclude that an additional effect is operative in case of non-stoichiometric
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cluster, namely the surface chemistry effect. The surface chemistry effect adds on the

surface geometry effect in case of Cd centred clusters, while it acts in an opposite way to

that of surface geometry effect in case of S centred clusters, thereby reversing the trend

in the sense odd shell clusters are now stabilized in WZ structure and even shell clusters

are stabilized in ZB structure. The relative stability between WZ and ZB structures in

case of non-stoichiometric clusters, is driven dominantly by the surface chemistry rather

than the surface geometry as has been found in case of stoichiometric clusters.

In order to investigate the microscopic reasons associated with the surface that drives
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Figure 4.7: Average number of dangling bonds per surface atom (DB) for non-

stoichiometric CdS clusters in ZB and WZ structures. The inset shows the difference

between WZ and ZB structures. Plot is independent of whether the clusters are Cd-

centred or S-centred.

this effect, we have computed the average charge enclosed within a sphere around a

Cd atom and that around an S atom within a given cluster. There is no unique way

to divide space in an AB compound into A and B regions. Therefore, two choices of

sphere radius have been made : in one case, the spheres were taken to be equal sized

with radius as half the Cd-S bond length, in another case the choice of sphere radius

was guided by the Hartree plot of the potential. We carried out calculations for Cd-

terminated nano-clusters and S-terminated nano-clusters as well as for that of the bulk

with both ZB and WZ structures in every case. The following results emerge from these

calculations independent of the structure type. While the Cd-terminated clusters show

similar charge distributions as those of bulk, S-terminated clusters show about 0.2 fraction
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of less electronic charge enclosed within the spheres. This is found to be true for both

choices of sphere radii. This, in turn, would indicate covalency to be stronger in case of

S-terminated clusters resulting into significant amount of charge residing in the interstitial

region between Cd and S-centred spheres. This is illustrated in Fig. 4.8, which shows

the charge density distribution (δρ) around a surface S atom, and that around a surface

Cd atom for a 4-shell non-stoichiometric cluster, after subtracting the charge density of

the isolated atom (ρa) and that of the system without the chosen atom (ρs) from the

actual system (ρt). While Cd terminated cluster shows hardly any change in the region

of Cd-S bond, there is a significant accumulation of charge around the Cd-S bond in case

of S-terminated cluster. This provides a clear evidence for an enhanced covalency and,

therefore, reduced ionicity in case of S-terminated cluster resulting into increased stability

of ZB phase over the WZ phase. In this context, it is interesting to point out from our

work of chapter 3 that the stability of the two competing crystal phases, namely ZB and

WZ, changes systematically for the bulk systems, CdS, CdSe and CdTe. While CdS has

the WZ structure, CdTe is known to have the ZB form which has indeed been explained

in terms of increased covalency. This is consistent with the present observation of ZB

structure for CdS nano-crystal being stabilized in presence of a S-terminating layer which

is also substantially more covalent.

Passivated stoichiometric clusters

In realistic situation, the clusters are grown in presence of some passivating agent. Al-

though ideally the role of the passivator is to restrict the growth of the cluster by saturat-

ing the unpassivated dangling bonds, which opens up a clear gap in the energy spectrum

without supposedly changing the intrinsic properties of the clusters, it may also influence

the energy stability of the cluster itself. This is however very complicated and rather

unexplored issue due to the complexity of various passivating agents used in experiments.

A good understanding of the atomic structure of such complex passivating agents like

trictylphosphine (TOP) or trictylphosphine oxide (TOPO) in many cases is unavailable

and it is almost impossible to deal with such large complexes within an accurate first-

principles approach. Very often, therefore fictitious H atoms are used in theoretical cal-

culations for the purpose of passivation. In absence of any other well-defined procedure
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ZB
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Figure 4.8: Charge density contribution (δρ = ρt − ρa − ρs) around a surface atom of

4-shell non-stoichiometric CdS nano-clusters. The isosurface is chosen at .007 e− /(Å3).

we have therefore considered the passivation by fictitious H atoms as explained in section

4.3 and in the following have studied the effect of the passivation on both stoichiometric

and non-stoichiometric clusters. In Fig. 4.9, we show the computed density of states of

a representative stoichiometric CdS cluster with 4 shell and ZB structure in absence and

presence of passivation. We note that assumed passivation could successfully remove the

states close to Fermi energy, opening up a gap of about 1.5 eV. Similar results are obtained

for clusters with other different shell structures and also with WZ symmetry. Having been

convinced about the proper functioning of the passivator, in Fig. 4.10 we show the varia-

tion of the cohesive energy differences between the WZ and ZB structured stoichiometric

CdS nano-clusters as a function of increasing cluster size. Interestingly we note, that

the oscillating behaviour of the relative stability between WZ and ZB structured clusters

observed for naked stoichiometric clusters survives even in presence of passivation, in the

sense the even shelled clusters favour the WZ structure and the odd shell clusters favour

the ZB structure. This presumably is driven by the fact that the difference in number

of bonds with fictitious H atoms between WZ and ZB structures oscillates as a function
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Figure 4.9: Density of states for 4 shell ZB structured stoichiometric cluster. Left panel

shows the DOS for unpassivated cluster while the right panel shows the DOS for passivated

cluster. Black, red, green and blue lines correspond to total DOS, Cd-contribution, S-

contribution and that of H-contribution (in case of passivated cluster only) respectively.

of increasing cluster size. As already stated, we have followed in the above a simplified

treatment of passivating agent, the situation in presence of realistic passivators need to

be explored, which however is beyond the scope of our present study.

Passivated non-stoichiometric clusters

In this section, we focus on non-stoichiometric clusters and the role of passivation in this

class of clusters. The passivation has been done following the same prescription as in case

of stoichiometric clusters. Fig. 4.11 shows the density of states plot for a representative

non-stoichiometric cluster in absence and presence of passivator. As found in case of

stoichiometric clusters, the passivator removes the surface states appearing close to Fermi

energy in the unpassivated case and shifts them away from Fermi energy, thereby opening

up a clear gap at the Fermi energy. The corresponding variation in the relative stability

of the WZ and ZB structures for the passivated non-stoichiometric clusters are shown in

Fig. 4.12.

The left panel shows the data for Cd-centred clusters while the right panel shows the

data for S-centred clusters. The chosen scheme of passivation seems to have a pronounced
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Figure 4.10: Variation of cohesive energy difference between WZ and ZB structures with

size for passivated stoichiometric clusters.

effect for the non-stoichiometric clusters in the sense apart from very small clusters, the

tendency towards formation in ZB phase seemingly is found to be higher than that in

WZ phase in general, irrespective of even or odd number of shell, and terminating layer,

although in some cases the energy difference is indeed tiny (within 1-2 meV) and is

within the calculational accuracy. For the non-stoichiometric clusters, study of realistic

passivators will be even more interesting since in many cases the passivating agent itself

may have S/Cd content, giving rise to preferential S or Cd termination of the synthesized

clusters.

4.4.2 Band Gap Variation with cluster size

The study of CdS clusters in presence of passivator also allows us to investigate the

variation of the band gap as a function of increasing cluster size. In Figs. 4.13 and 4.14,

we show the computed band gaps of the ground state structures of passivated clusters at

each shell size, for stoichiometric and non-stoichiometric clusters, respectively. The insets

show the corresponding individual variations of the highest occupied molecular orbital

(HOMO) and lowest unoccupied molecular orbital (LUMO). It is to be noted that CdS

being a direct gap semiconductor, the band gaps of WZ and ZB phases are expected to be

similar [28], irrespective of stable phase as ZB or WZ. As expected, the calculated band

gap shows an overall decrease as a function of increasing cluster size due to the well known

quantum confinement effect, asymptotically approaching the bulk band gap value in the
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Figure 4.12: Variation of cohesive energy difference between WZ and ZB structures with

size for passivated Cd-centred (left panel) and S-centred (right panel) non-stoichiometric

clusters.

limit of the infinite cluster size. The calculated band gap for the clusters are systematically

underestimated due to the over-binding problem related with LDA treatment of exchange-

correlation functional. For non-stoichiometric clusters, the band gap variation is found to

be highly non-monotonic. The scattered experimental data for CdS nano-clusters in Fig.

4.1 may be suggestive of this effect. The odd shell clusters for Cd-centred clusters and

the even shell clusters for S-centred clusters show significantly higher value of band gap

compared to their respective counterparts. We therefore conclude that the S-terminated

clusters in general show larger band gap compared to Cd-terminated clusters. As is evident

from the variation of HOMO and LUMO energies shown in the inset, this oscillation is

primarily contributed by the oscillation in the LUMO. The origin of such a behaviour

lies in the density of states of the unpassivated cluster itself. Comparing the density

of states of Cd-terminated and S-terminated non-stoichiometric clusters as shown in left

and right panels of Fig. 4.11, we found that while for S-terminated DOS, there exists a

well-defined gap in the unoccupied part of the spectrum, the situation is very different

in case of Cd-terminated cluster. The spectrum is practically gap less or with very small

gap in the unoccupied region. Inclusion of passivating atom, changes the unoccupied

spectra drastically in case of Cd-terminated cluster, while the unoccupied spectra apart

from the removal of the states very close to Fermi energy changes only modestly in case

of S-terminated clusters. We note that, for a non-stoichiometric Cd-rich CdS cluster, the

nominal valences of Cd and S deviate from that in bulk, which results in the formation

of fewer CdS anti-bonds compared to that of bulk. The pushing up of Cd dominated
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Figure 4.13: Calculated band gaps of the ground state structures at each shell size for

stoichiometric clusters. Inset shows the positions of HOMO (solid right triangles) and

LUMO (solid left triangles) with respect to HOMO of 6th shell cluster, as a function of

cluster size.
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Figure 4.14: Calculated band gaps of the ground state structures at each shell size for

non-stoichiometric clusters. Left and right panels show the results for Cd-centred and

S-centred clusters respectively. Insets show the positions of HOMO (solid right triangles)

and LUMO (solid left triangles) with respect to HOMO of 6th shell cluster, as a function

of cluster size.
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bands due to formation of anti-bonds therefore does not happen, thereby aligning the

Cd-dominated bands about the same energy position as that of elemental Cd.

4.5 Summary and Conclusions

Using first-principles density functional based calculations employing plane wave basis

set we present an extensive study of the energy stability and the band gap variation

in CdS clusters. In particular, we have considered the relative stability between ZB

and WZ structures. In order to explore the varied experimental conditions, we have

considered non-stoichiometric as well as stoichiometric clusters, in absence and presence

of passivating atoms. Our study shows that the relative stability depends crucially on

the surface structure, both geometry and chemistry depending on the specific cases. This

may give rise to highly non-monotonic behaviour of the relative stability as a function

of the growing cluster size. The band gap variation for the non-stoichiometric clusters is

also found to exhibit strong oscillation.
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Chapter 5

Interplay of structure and magnetism in pure cobalt

clusters Con (n = 2-20)

In this chapter we study the structural, electronic and magnetic properties of Con clusters

(n = 2-20) using DFT within the pseudopotential plane wave method. The cobalt atoms

are ferromagnetically ordered and the calculated magnetic moments are found to be higher

than that of corresponding hcp bulk value, which are in good agreement with the recent

Stern-Gerlach experiments. An unusual hexagonal growth pattern has been observed in

the ground state structures, unlike the clusters of other two 3d transition metals Mn and

Fe which prefer icosahedral growth pattern. 1

5.1 Introduction

With the advance of modern technology, it is now possible to produce and to do mea-

surements on small metal clusters of a few atoms. Magnetic moment measurements on

small clusters of transition metal elements have already shown several unexpected be-

haviours. For example, Cox and co-workers found non-zero magnetic moment in the bare

Rh clusters for sizes less than 60 atoms [1], though the bulk Rh is a Pauli paramagnet

at all temperatures. Clusters of ferromagnetic materials show enhancement of magnetic

moment as compared to their bulk values [2]-[7]. Finite magnetic moments have been

1This chapter is based on the following paper:

Soumendu Datta, M. Kabir, S. Ganguly, B. Sanyal, T. Saha-Dasgupta and A. Mookerjee; Structure,

bonding and magnetism of cobalt clusters from first-principles calculations, Phys. Rev. B, 76, 014429

(2007).
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observed in the atomic clusters of Cr and Mn, which are antiferromagnetic in bulk [8, 9].

Two recent Stern-Gerlach experiments [10, 11] on the measurement of magnetic moment

in Co clusters have reported magnetic moments in clusters of sizes as small as of 7 atoms.

The intrinsic per-atom magnetic moment was found to be substantially larger than the

bulk value and generally decreased with increasing cluster size. The enhancement in the

magnetic moment in small clusters has been attributed to the lower coordination of the

surface atoms resulting in a narrowing of the d-bands and hence greater spin polariza-

tion. Therefore, magnetic properties of transition metal clusters are very sensitive to

local atomic environment and the first step in calculating any electronic property using

theoretical approach is to determine the ground state structures of the clusters. In this

chapter, we will study the interplay of structure and magnetism of pure Con clusters (n =

2-20), as they grow atom by atom, using first-principles DFT based calculations. Below

we summarize the previous experimental and theoretical works on Con clusters.

The magnetic properties of bare Con clusters were first investigated via SG molecular

beam deflection experiment by Bloomfield and co-workers for Co20-Co215 clusters [3, 4]

and by de Heer and co-workers for Co30-Co300 clusters [5]-[7]. These studies showed

that in the temperature range of 77-300 K, the Con clusters display high-field deflections,

which are characteristic of superparamagnetic behaviour. On the other hand, information

on the ground state geometry of the transition metal clusters is usually obtained from

the experiments involving chemical probe methods and photoelectron spectroscopy. Such

studies for the Con clusters are very limited and not definitive. Reactions of Con clusters

with NH3 and H2O [12] indicate icosahedral structures for the bare and ammoniated

clusters in the size range n = 50-120 and nonicosahedral packing for small (around 19

atoms) Con clusters. Although the structures of ammoniated Fen, Con and Nin clusters in

the size range of n = 19-34 atoms have been found to be poly-icosahedral [13], it has been

proposed that bare clusters probably adopt a variety of structures. The photoionization

experiment [14] indicated icosahedral atomic shell structures for large Nin and Con clusters

of 50-800 atoms. However, structures were not well identified for small Con clusters (n ≤
50) because atomic sub-shell closings in different symmetry based clusters occur in close

sequences. These experimental results put together indicate that the icosahedral growth

pattern for small sized Con clusters is less evident.
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Theoretical work on Co clusters are limited and the available results are contradictory.

Li and Gu [15] performed first-principles calculation of small Con clusters (4≤ n ≤19)

using spin-polarized discrete variational method within DFT. However, they had not opti-

mized the structures and considered only some special structures with lattice parameters

same as the bulk Co. Guevara et al [16] used an unrestricted Hartree-Fock tight-binding

formalism, starting from spd-bulk parameterization, but they only considered fixed body-

centred cubic (bcc) and fcc geometries for a maximum of 177 atoms without structural re-

laxation. Andriotis and Menon [17] have used a tight-binding molecular dynamics scheme

to study Co clusters for some selected cluster sizes. Castro et al [18] performed all-electron

density functional calculations using both local density and generalized gradient approx-

imations. However, the size of the clusters were limited only up to 5 atoms. Recently,

Lopez et al [19] studied Con clusters (4 ≤ n ≤ 60), where minimization was done using an

evolutive algorithm based on a many-body Gupta potential [20] and magnetic properties

have been studied by a spd tight-binding method. As compared to ab-initio methods, the

parametrized tight-binding Hamiltonian reduces the computational cost drastically, but

its main problem is the lack of transferability of its parameters. In particular, because of

the lack of DFT like self-consistency the charge transfer effects are not properly accounted

for and hence magnetic moment results are not fully reliable.

5.2 Computational Details

The calculations were performed using density functional theory, within the pseudopoten-

tial plane wave method as implemented in VASP code. We have used PAW method and

PBE exchange-correlation functionals for spin-polarized GGA. The 3d and 4s electrons

were treated as valence electrons and the wave functions were expanded in the plane

wave basis set with the kinetic energy cut-off of 335 eV. Reciprocal space integrations

were carried out at the Γ point. Symmetry unrestricted geometry and spin optimizations

are performed using conjugate gradient and quasi-Newtonian methods until all the force

components were less than a threshold value of 0.005 eV/Å. Simple cubic super-cells

were used with the periodic boundary conditions, where two neighbouring clusters were

kept separated by at least 12 Å vacuum space. This essentially made the interaction
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between the cluster images negligible. For each size, several initial geometrical structures

have been considered. To get the ground state structures, we have explicitly considered

all possible spin multiplicities for each geometrical structure in each cluster size. The

cohesive energy per atom was calculated as,

Ec(Con) =
1

n

[
n E(Co) − E(Con)

]
, (5.1)

where n is the size of the cluster. E(Co) and E(Con) are the total energies of isolated

Co-atom and n-atom Con cluster, respectively. For such a definition, a positive sign in

Ec corresponds to binding.

5.3 Results and discussions

5.3.1 Trends in structure and magnetism

Co2 - Co12 clusters

Our calculated ground state structures of Con clusters for n = 2-12 have been shown in

Fig. 5.1. Below we discuss briefly the trend in structure and magnetism for each of these

clusters. The experimental estimation of bond length and cohesive energy of Co2 dimer

was first made by mass spectroscopy [21], which are 2.31 Å and 1.72 eV, respectively.

Our present calculation gives dimer cohesive energy as 1.45 eV/atom and a bond length

of 1.96 Å. This calculated dimer bond length is about 78% of the bulk hcp Co. We

found the Co atoms in dimer have bonding configuration closer to 3d84s1 than that of

the isolated Co atom, 3d74s2 and in addition to the highly delocalized 4s electrons, the

more localized 3d electrons also contribute strongly to the bonding (similar conclusion

was also made in Ref. [22]), which consequently, produces a shorter bond length for the

dimer. Total magnetic moment of the Co2 dimer is 4 µB, which is also consistent with

mass spectroscopic measurement [21] and with the previous first-principles calculations

[18],[23]-[25].

The linear and triangular structures are the probable starting structures for Co3 clus-

ter. Upon relaxation, an isosceles triangle (having each of the equal side length of 2.19

Å and other one of 2.10 Å) with total magnetic moment 5 µB is found to be the ground
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state with cohesive energy 1.78 eV/atom. Another isosceles triangle with two long and

one short bond lengths of 2.25 and 2.06 Å, respectively, is found to be nearly degener-

ate with the ground state structure (energy difference is only 3 meV). According to the

present calculation, the optimal linear structure has a total magnetic moment of 7 µB

and lies 0.43 eV higher than the ground state. Present result is consistent with the spin

resonance spectra of Co3 in Ar/Kr matrix, which indicated a triangular structure with

a total moment of 5 or 7 µB to be the ground state [26]. Previous all-electron density

functional calculation [18] also predicted an isosceles triangle (2.12, 2.12, 2.24 Å) with a

magnetic moment of 1.7 µB/atom as the ground state for Co3, while tight-binding study

[17] predicted an isosceles triangle of much higher bond lengths and magnetic moment.

Out of tetrahedral, rectangular and linear structures as the initial geometries for Co4

cluster, a distorted tetrahedron with a total magnetic moment of 10 µB appears to be the

most stable structure. Its cohesive energy is 2.27 eV/atom and average bond length is 2.34

Å. Among the six sides of this tetrahedral ground state, two pairs have equal lengths of

2.14 Å, closer to the bond length of dimer (these are always on opposite TM−TM sides),

while the third pair is much larger, 2.72 Å. These short bonds have high 3d electron

contributions and they are, therefore, the major source of increase of the bonding in the

distorted structure. Castro et al [18] predicted a strong Jahn-Teller distorted tetrahedral

ground state with bond lengths almost equal to the present values. Yoshida et al [27] also

predicted a tetrahedral structure with a bond length of 2.25 ± 0.2 Å as the ground state

for Co−4 anion. The initial rectangular structure, after optimization, becomes a rhombus

with each side of length 2.14 Å and two diagonals of 2.67 Å and 3.35 Å and appears as

the first isomer with total magnetic moment of 10 µB, being 0.11 eV higher in energy

from the ground state. The optimal linear structure is at a much higher energy than the

ground state.

We took trigonal bi-pyramid, square pyramid and two planar structures: (i) two

triangles connected through a common vertex and (ii) a pentagon, as the initial structures

for Co5 cluster. The trigonal bi-pyramid with total magnetic moment 13 µB is found to

be the most stable structure. This structure has 2.55 eV/atom cohesive energy and 2.34

Å average bond length. In this ground state, there are two types of bond lengths: all

the sides of the upper and lower triangular pyramids are of same length and are smaller
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(2.18 Å), while those of the interfacing planar triangle are much larger, 2.65 Å. Another

triangular bi-pyramid and a square pyramid with equal magnetic moments of 11 µB are

found to be the degenerate first isomer. They lie 125 meV higher in energy. The optimal

planar pentagon with 11 µB magnetic moment lies much, 1.04 eV, higher and the double

triangle structure lies even higher in energy from the ground state. Present results are

in agreement with the previous AE-GGA calculation [18], where they predicted the same

geometric structure with 2.28 Å average bond length and 2 µB/atom magnetic moment

as the ground state. On the other hand, the prediction [19] of average bond length and

magnetic moment using Gupta potential is much higher, though it predicted the same

geometry.

We have studied the capped trigonal bi-pyramid, octahedron and pentagonal pyramid

to search the ground state for Co6 cluster. From now on for the larger sized clusters,

the planar structures have been discarded by intuition. After relaxation, we found an

octahedral structure with 14 µB total magnetic moment as the ground state. Each side of

this octahedral ground state is about 2.27 Å and has a cohesive energy of 2.93 eV/atom.

Another slightly distorted octahedron with 12 µB moment appears as the first isomer.

However, it is 0.87 eV higher compared to the ground state. Our prediction of octahedral

ground state is in agreement with previous theoretical studies [19, 15, 28, 24]. The octahe-

dral structure for Co6 is so stable that even the starting capped triangular bi-pyramidal

structure, after relaxation, transforms to the octahedral ground state. In the present

calculation, the optimal pentagonal pyramid having 12 µB magnetic moment, lies much

higher (1.7 eV) in energy compared to the ground state.

It is to be noted that for clusters having more than six atoms, the ground state struc-

tures, most often have a octahedral fragment (cf. Fig. 5.1). For Co7 cluster, we considered

capped octahedron, pentagonal bi-pyramid and bi-capped triangular bi-pyramid as the

starting guess. After simultaneous relaxation of both geometrical and magnetic structure,

the capped octahedron with total magnetic moment 15 µB appears as the most stable

structure. The experimentally measured magnetic moment, 2.36 ± 0.25 µB/atom [11],

is little higher than our result. The optimal pentagonal bi-pyramid, which is a building

block of icosahedral structure, has a total magnetic moment of 15 µB, and is the first

isomer, being 0.19 eV higher in energy. However, using Gupta potential, Lopez et al [19]
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Figure 5.1: Ground state structures of Con clusters for n = 2-12 obtained by our DFT

calculation. Numbers in the parenthesis represent number of atoms in the cluster (followed

by .1 indicates ground state) and total magnetic moment, respectively.

predicted a pentagonal bi-pyramidal structure as the ground state, and a capped octa-

hedra as the first isomer. According to our calculation, the optimal bi-capped triangular

bi-pyramid has a total magnetic moment of 15 µB and lies 0.42 eV higher.

As expected, the most probable starting structures for Co8 cluster are bi-capped oc-

tahedron, capped pentagonal bi-pyramid and tri-capped triangular bi-pyramid. However,

the bi-capped octahedron with 16 µB magnetic moment is found to be the most stable

structure. The experimentally measured magnetic moment, 2.51 ± 0.15 µB/atom [11], is

higher than the present value. The ground state has 3.07 eV/atom cohesive energy and

an average bond length of 2.30 Å. The optimal tri-capped triangular bi-pyramid and the

optimal capped pentagonal bi-pyramid have an equal magnetic moment of 16 µB but lie

0.4 and 0.48 eV higher in energy respectively. They are the first and second isomers.

Similarly, for the Co9 cluster, we considered tri-capped octahedron and bi-capped

pentagonal bi-pyramid as initial configurations. A distorted tri-capped octahedron with

total magnetic moment of 17 µB is found to be the most stable structure with 3.14

eV/atom cohesive energy, while experimental magnetic moment is much higher, 2.38 ±
0.11 µB/atom. The optimal bi-capped pentagonal bi-pyramid has 17 µB magnetic moment

and lies 0.53 eV higher in energy. This structure is found to the first isomer. However,
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calculation by semi-empirical molecular dynamic technique [19] predicted the bi-capped

pentagonal bi-pyramid as the ground state with a relatively high magnetic moment.

Different tri-capped pentagonal bi-pyramid (TCPBP) structures along with different

tetra-capped octahedral structures were taken as initial structures for Co10 cluster. Inter-

estingly, a TCPBP structure with 18 µB total magnetic moment is found to be the ground

state. The calculated magnetic moment in the ground state is smaller as compared to

the neighbouring sizes, which is indeed the case in experiment (cf. Fig. 5.8 and will be

discussed later). This is because of the fact that TCPBP is an icosahedral fragment based

on pentagonal bi-pyramid. This is different from the structural growth seen for Co6-Co9

clusters, where the ground state structures are all octahedral based. For this TCPBP

ground state, average coordination and average bond lengths are slightly higher and the

competing effect of these two makes the magnetic moment smaller than its neighbour-

ing clusters. Another TCPBP with total magnetic moment 20 µB lies 0.08 eV higher in

energy compared to ground state and is found to be the first isomer. The experimental

magnetic moment (2.07 ± 0.10 µB/atom [11]) is larger compared to the predicted ground

state but very close to the first isomer, which is energetically very close to the ground

state.

For 11 and 12 atom clusters, the initial structures are derived from 13-atom hcp, icosa-

hedron or cub-octahedral clusters, removing 2 or 1 atoms. Interestingly, after relaxation,

the minimal energy structures for both Co11 and Co12 clusters, have a distorted octahedron

as a building block with magnetic moments 21 µB and 24 µB respectively. The experi-

mentally determined magnetic moments for these two clusters are 2.42 ± 0.09 µB/atom

[11] and 2.26 ± 0.08 µB/atom [11] respectively, slightly higher than our calculated values.

Co13 - Co20 clusters

We considered the icosahedral, hcp, cub-octahedral and fcc based geometries as initial

structures for Co13 cluster. 13-atom icosahedral structure is the first closed shell icosahe-

dron having two pentagonal rings, two apex atoms and a centre atom. We are calling it

〈1,5,1,5,1〉 stacking. A 13-atom hexagonal close packed structure consists of a hexagonal

ring around a central atom and two triangular planes above and below it. We are calling
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it 〈3,7,3〉 stacking. Upon relaxation of both geometry and spin degrees of freedom, the

hcp structure is distorted heavily compared to others having different symmetries. The

minimum energy structure is a distorted hcp structure with total magnetic moment 25

µB and cohesive energy 3.28 eV/atom. The structure has 22 triangular faces and 33 edges

(cf. Fig. 5.2). Knickelbein found the experimental magnetic moment to be 2.30 ± 0.07

µB/atom [11], which is slightly higher than the present value. However, this calculated

value is in good agreement with another recent SG experiment by Xu et al [10, 30], which

measured 2.00±0.06 µB/atom moment. Another distorted hcp with total magnetic mo-

ment of 27 µB and 0.14 eV above the minimum energy state, is the first isomer. The

optimal icosahedral structure of total spin 31 µB (structure having 20 triangular faces

and 30 edges) is 0.17 eV higher than the minimum energy state and emerges as second

isomer. Third isomer is a distorted cub-octahedron with total magnetic moment 25 µB

and it is 0.22 eV above the minimum energy state.

With the increase in the number of atoms in the cluster, the determination of the

ground state becomes a difficult task as the number of local minima in the potential

energy surface increases very rapidly with the number of atoms in the cluster. For clusters

having more than 13 atoms, we have, therefore, considered different initial structures

derived from two most competing symmetries: hcp and icosahedral and allow them to

relax considering all possible spin configurations to find the minimum energy structure.

The predicted minimum energy structure along with an higher energetic isomer for each

cluster in the size range n = 13-20 have been shown in Fig. 5.2, while table 5.1 and table

5.2 contain the details of the cohesive energy and magnetic moments of ground states and

several isomers.

For Co14 cluster, the optimal capped icosahedra with total magnetic moment 28 µB

and the optimal hcp structure (having 〈3,7,4〉 stacking) of same magnetic moment are

found to be degenerate. The energy separation is only 4 meV (see Fig. 5.2). We also

found several isomers which lie very close to these structures : an icosahedral structure

(24 µB), a hcp structure (26 µB) and another icosahedron (30 µB) lie only 5, 7 and 8

meV above the minimum energy state, respectively (see Table 5.1). The very recent SG

experimental predictions of magnetic moment range from 2.11± 0.02 µB/atom [10, 30]

to 2.29 ± 0.06 µB/atom [11, 29] for Co14 cluster, which are in good agreement with the
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Figure 5.2: The minimum energy state and a higher energy isomer of Con clusters (n =

13-20). For n = 14, the hcp and icosahedral structures are almost degenerate. For n =

13 and 15-20, the minimum energy structure has hcp symmetry and we have shown the

optimal icosahedral structure as the higher isomer. The first entry in the parenthesis gives

the cluster size as well as isomeric position, second entry corresponds to total magnetic

moment and the third entry in the alternate parentheses indicates the relative energy to

the minimum energy state.
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present result.

The minimum energy structure for Co15 has hcp symmetry with 〈4,7,4〉 atomic staking

and with total magnetic moment 31 µB. This calculated magnetic moment is in agreement

with the SG experiment of Xu et al, which is 2.09±0.04 µB/atom [10, 30]. However,

Knickelbein predicted a larger value [11, 29]. The other hcp structures with total magnetic

moments of 29, 33 and 27 µB lie ∼ 0.05, 0.12 and 0.17 eV higher than the minimum energy

state, being the 1st, 2nd and 3rd isomers respectively. The optimal bicapped icosahedral

structure with 29 µB magnetic moment is the fourth isomer, which lies 0.17 eV above the

lowest energy state.

The same kind of structural growth is observed in the case of Co16 cluster. The hcp

structure (having 〈4,7,5〉 stacking) with total magnetic moment of 34 µB is found to be

the lowest in energy and has cohesive energy of 3.46 eV/atom. This structure is nearly

degenerate (5 meV lower) with another hcp structure, which has 32 µB magnetic moment.

The next two isomers are also of same hcp motif, which have 30 and 36 µB magnetic

moment and they lie 0.21 and 0.31 eV higher in energy with respect to the lowest energy

state, respectively. The optimal tricapped icosahedral structures with magnetic moments

of 30 and 32 µB lie 0.32 and 0.36 eV higher, respectively. The optimal hcp and icosahedral

structures are shown in Fig. 5.2. The other icosahedral structure with 〈5,1,5,1,4〉 stacking

(i.e one less atom in the third pentagonal ring) is found to be much higher in energy.
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Figure 5.3: Plot of cohesive energy per atom (Ec) for optimal hcp and optimal icosahedral

structures (left) and plot of total energy difference between these optimal structures,

Ediff = −[E(hcp) − E(icosahedral)], (right) for the size range n =13-20. Ediff increases

with cluster size.

The hcp structure (having 〈5,7,5〉 stacking) and with total magnetic moment of 35
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µB is the lowest energy state for Co17 cluster. The calculated magnetic moment, 2.06

µB/atom, is slightly smaller than that predicted by both the recent experiments [10, 11]

(see Table 5.2). The next three isomers also have hcp symmetry. They have 37, 33 and

31 µB magnetic moments and lie 0.12, 0.17 and 0.41 eV higher than the lowest energy

state, respectively. The optimal icosahedral structure (Fig. 5.2) has 〈5,1,5,1,5〉 stacking

(i.e a double icosahedral structure without two opposite apex atoms) and appears as 4-th

isomer, being 0.81 eV higher in energy from the minimum energy state.

A 〈6,7,5〉-stacked hcp structure (Fig. 5.2), which has a total magnetic moment of 36 µB

is found to be the lowest energy state for Co18 cluster. This structure has a cohesive energy

of 3.61 eV/atom. The magnetic moment is in agreement with Knickelbein, 2.07±0.04

µB/atom [11, 29]. However, Xu et al predicted a higher value, 2.37±0.07 µB/atom [10, 30].

Another two hcp structures with total magnetic moments 38 and 34 µB lie 0.02 and 0.19

eV higher in energy, respectively and are the first and second isomers. The optimal

icosahedral structure (a double icosahedra without one apex atom) has a total magnetic

moment of 36 µB, and lies much higher (0.57 eV) in energy, being the third isomer.

The minimum energy structure for Co19 cluster is a hcp based structure with 〈6,7,6〉
stacking and with 39 µB magnetic moment. The calculated magnetic moment, 2.05

µB/atom, is closer to the value of Knickelbein, 2.21±0.03 µB/atom [11, 29] than that

of the value predicted by Xu et al, 2.48±0.04 µB/atom [10, 30]. The next four isomers are

also found to be of same hcp packing. These isomers with total magnetic moments 37,

35, 33 and 41 µB lie 0.17, 0.48, 0.90 and 1.16 eV higher than the minimum energy state,

respectively. On the other hand, the optimal double icosahedral structure (Fig. 5.2) has

37 µB magnetic moment and lies 1.22 eV higher from the ground state. The fcc and hcp

fragments have also been proposed as ground state structures in the previous theoretical

calculations [15, 16]. Also some calculations [17, 19] predicted icosahedral ground state

for Co19.

Among all the considered structures the capped 19-atom hcp geometry (Fig. 5.2) is

found to be the lowest energy state for Co20 cluster. The calculated magnetic moment is

found to be 2 µB/atom for this structure, which is in agreement with the value measured

by Knickelbein [11] (2.04±0.05 µB/atom). However, the moment measured by Xu et al

is much higher (2.36±0.02 µB/atom [10]). Similar to what we have seen for Co15−Co19
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clusters, the next few isomers are also of hcp motif. The hcp structures with total magnetic

moments 38, 36, and 42 µB, which are 0.26, 0.63 and 0.89 eV higher are found to be the

first, second and third isomers, respectively. The optimal capped double icosahedral

structure has a total magnetic moment of 38 µB and appears as the forth isomer (Fig.

5.2). However, this structure lies much higher in energy (1.10 eV).

In order to distinctly point out the preference of hcp structures over the icosahedral

structures in this size range n = 13-20 of Co clusters, we have plotted in Fig. 5.3 the

cohesive energies for the optimal hcp and optimal icosahedral structures (see Fig. 5.2 for

the optimal geometries) and the corresponding energy difference (Ediff) between them.

The optimal hexagonal structures are always found to be the ground state for this size

range except for Co14, where the optimal hexagonal and icosahedral structures are found

to be degenerate. Moreover, few isomers next to the ground state are also of hcp motif and

the optimal icosahedral structures appear as higher energy (third, fourth or fifth) isomers

for n = 15-20. The energy difference between the hcp ground state and optimal icosahedral

structures increases with increasing cluster size making icosahedral structures more and

more unfavourable. We plot the energy variation as a function of cluster magnetic moment

for icosahedral and hcp Co13, Co15, Co17, and Co19 clusters in Fig. 5.4. Both the structures

show similar qualitative behaviour for all the clusters and they have hcp minima around

∼ 2 µB/atom moment.

5.3.2 Understanding structural stability

Calculated cohesive energies are plotted in Fig. 5.5 for the ground states of Con clusters

in the size range n = 2-20. Since the coordination number increases with the number of

atoms in the cluster, the cohesive energy increases monotonically. The cohesive energy

of the largest cluster studied here (Co20) is 3.62 eV/atom, which is about 82% of the

experimental bulk value, 4.4 eV/atom [31] for hcp Co. Upon extrapolation of the linear

fit of the cohesive energy per atom data towards n−1/3 → 0 [Fig. 5.5(a)], we can estimate

the cohesive energy of the infinitely large cluster. This is found to be 5.0 eV/atom, which

is larger than the experimental value for hcp bulk Co. However, within the same level of

theory we found the hcp bulk cohesive energy to be 5.11 eV/atom, which is close to the
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Table 5.1: Cohesive energy, relative energy to the theoretically computed minimum energy

state (△E = E − Emin) and magnetic moment for Con (n = 2-14) clusters. The entry in

the first column “n.i” indicates ground state for i = 1 and isomers for i > 1 of n atoms

cluster. Recent SG experimental results (Refs. [10, 11, 29, 30]) of the magnetic moment

are shown for comparison.

Cluster Ec △E Magnetic Moment

(eV/atom) (eV) (µB/atom)

Theory SG Exp.

2.1 1.452 0.000 2.00 −
3.1 1.783 0.000 1.67 −
3.2 1.783 0.003 2.33

4.1 2.274 0.000 2.50 −
4.2 2.248 0.106 2.50

5.1 2.553 0.000 2.60 −
5.2 2.528 0.125 2.20

6.1 2.929 0.000 2.33 −
6.2 2.784 0.869 2.00

7.1 2.971 0.000 2.14 2.36±0.25 [11, 29]

7.2 2.944 0.192 2.14

8.1 3.074 0.000 2.00 2.51±0.15 [11, 29]

8.2 3.024 0.400 2.00

8.3 3.013 0.484 2.00

9.1 3.143 0.000 1.89 2.38±0.11 [11, 29]

9.2 3.084 0.527 1.89

10.1 3.137 0.000 1.80 2.07±0.10 [11, 29]

10.2 3.128 0.085 2.00

11.1 3.205 0.000 1.91 2.42±0.09 [11, 29]

11.2 3.203 0.016 1.91

12.1 3.252 0.000 2.00 2.26±0.08 [11, 29](2.21±0.01) [10, 30]

12.2 3.243 0.103 1.89

13.1 3.279 0.000 1.92 2.30±0.07 [11, 29] (2.00±0.06) [10, 30]

13.2 3.268 0.140 2.08

13.3 3.266 0.167 2.38

14.1 3.323 0.000 2.00 2.29±0.06 [11, 29] (2.11±0.02) [10, 30]

14.2 3.322 0.004 2.00

14.3 3.322 0.005 1.71

14.4 3.322 0.007 1.86

14.5 3.320 0.008 2.14
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Table 5.2: Cohesive energy, relative energy to the theoretically computed minimum energy

state (△E = E − Emin) and magnetic moment for Con (n = 15-20) clusters. Recent

SG experimental results (Refs. [10, 11, 29, 30]) of the magnetic moment are shown for

comparison.

Cluster Ec △E Magnetic Moment

(eV/atom) (eV) (µB/atom)

Theory SG Exp.

15.1 3.397 0.000 2.07 2.38±0.03 [11, 29] (2.09±0.04) [10, 30]

15.2 3.393 0.046 1.93

15.3 3.388 0.125 2.20

15.4 3.385 0.169 1.80

15.5 3.385 0.171 1.93

16.1 3.458 0.000 2.13 2.53±0.04 [11, 29] (2.32±0.01) [10, 30]

16.2 3.458 0.005 2.00

16.3 3.445 0.208 1.88

16.4 3.439 0.308 2.25

16.5 3.438 0.319 1.88

17.1 3.514 0.000 2.06 2.24±0.04 [11, 29] (2.19±0.02) [10, 30]

17.2 3.506 0.123 2.18

17.3 3.504 0.167 1.94

17.4 3.490 0.407 1.82

17.5 3.466 0.812 2.06

18.1 3.555 0.000 2.00 2.07±0.04 [11, 29] (2.37±0.07) [10, 30]

18.2 3.554 0.024 2.11

18.3 3.544 0.194 1.89

18.4 3.523 0.571 2.00

19.1 3.607 0.000 2.05 2.21±0.03 [11, 29] (2.48±0.04) [10, 30]

19.2 3.597 0.174 1.95

19.3 3.581 0.478 1.84

19.4 3.559 0.901 1.74

19.5 3.546 1.158 2.16

19.6 3.542 1.220 1.95

20.1 3.620 0.000 2.00 2.04±0.05 [11, 29] (2.36±0.02) [10, 30]

20.2 3.607 0.262 1.90

20.3 3.588 0.634 1.80

20.4 3.576 0.891 2.10

20.5 3.565 1.103 1.90



Chapter 5. Interplay of structure and magnetism in pure cobalt clusters 89

 -43

 -41

 -39

 -37

 -35

 -33

 0  10  20  30  40

To
ta

l e
ne

rg
y (

eV
)

Magnetic moment (µB)

(a)

-43

-42

-41

 20  24  28  32

 -52

 -50

 -48

 -46

 -44

 -42

 -40

 0  10  20  30  40

To
ta

l e
ne

rg
y (

eV
)

Magnetic moment (µB)

(b)

-51.0

-50.5

-50.0

 24  28  32  36

 -60

 -58

 -56

 -54

 -52

 -50

 -48

 -46

 0  10  20  30  40  50

To
ta

l e
ne

rg
y (

eV
)

Magnetic moment (µB)

(c)

-60

-58

-56

 32  36  40

 -70

 -68

 -66

 -64

 -62

 -60

 -58

 -56

 -54

 -52

 0  10  20  30  40  50  60
To

ta
l e

ne
rg

y (
eV

)
Magnetic moment (µB)

(d)

-70

-68

-66

-64

 32  36  40  44

Figure 5.4: Plot of total energy as a function of magnetic moment for (a) Co13, (b) Co15,

(c) Co17 and (d) Co19 clusters. The dot (square) represents icosahedral (hcp) structure.

Insets represent magnification around the minima.

extrapolated value but again larger than the experimental value. This overestimation is

consistent with the DFT calculation [32].

We calculate the second difference in the total energy as :

∆2E(n) = E(n+ 1) + E(n− 1) − 2E(n), (5.2)

where E(n) represents the total energy of an n−atom cluster. Calculated ∆2E has been

plotted in Fig. 5.5(b), where we see the peaks at n = 6 and 9, i.e., the clusters with

6 and 9 atoms are particularly more stable than their neighbouring clusters. The stable

structure for Co6 is an octahedron and for Co9, it is a distorted tri-capped octahedron. The

collision-induced dissociation experiment (CID) [33] has also been indicated a maximum

at n = 6 in the measured dissociation energy, which indicates a higher stability of the

hexamer. The extra stability of hexamer indicates that the octahedral structure can act as

a building block for larger size clusters and, indeed, for Co15−Co20 clusters, we have found

a distinct hcp growth pattern and an octahedron is just a fragment of a hcp structure.
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Figure 5.5: Plot of cohesive energy per atom as a function of cluster size n for the ground

state structures of the entire size range 2≤ n ≤20. (a) Plot of cohesive energy per atom

(C.E.) as a function of n−1/3 for the clusters Con, 6≤ n ≤20 and a linear fit (−3.90 n−1/3

+ 5.00) to the data. (b) Plot of second difference in total energy (∆2E), which represents

the relative stability.

The calculated stability (Fig. 5.5 (b)) shows minima at n = 3, 5, 7, 10 and 14, which are

related to their weak bonding.

This can be further demonstrated by studying the dissociation energies as an n-atom

cluster fragments into m and (n−m)-atom clusters. The m-channel dissociation energy

can be calculated as,

Dm(n) = E(m) + E(n−m) − E(n), (5.3)

where E(n), E(m) and E(n−m) are the total energies of n, m and (n−m) atom clusters,

respectively. We have plotted the calculated single channel (D1) and dimer channel (D2)

dissociation energies in Fig. 5.6 and D1 is compared with the CID experiment by Hales et

al [33]. However, they have estimated this dissociation energy through an indirect method

: actually, they measured the single channel dissociation energy of Co+
n cation cluster and

derived the same for the neutral one by using the ionization energies (IE) of the neutral

clusters measured by Yang and Knickelbein [34] and Parks et al [35], i.e.,

Dexp
1 = D1(Co+

n ) + IE(Con) − IE(Con−1). (5.4)



Chapter 5. Interplay of structure and magnetism in pure cobalt clusters 91

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 2  4  6  8  10  12  14  16  18  20

D
1 

an
d 

D
2 

(e
V

)

Cluster Size n

D1
D2

D1
exp

Figure 5.6: Plot of single channel, D1 and dimer channel, D2, dissociation energies as a

function of cluster size n for the GS configurations. We compare our calculated single

channel dissociation with the CID experimental result in Ref. [33].

The calculated single channel dissociation energy, D1, shows a high peak at n = 6

and dips at n = 5, 7 and 10, which are consistent with our stability analysis. However,

we do not find any dip in the calculated dissociation energy at n = 14, as has been

seen in the CID experiment. Generally, the single channel dissociation energy is the

most favourable except for n = 4, where the dimer dissociation (Co4 → Co2 + Co2)

is more favourable than the single channel (Co4 → Co3 + Co) dissociation. Table 5.3

shows the theoretically computed single channel bond dissociation energy compared to

the experimentally measured values [33] for the entire range of clusters having sizes 2 to

20.

To understand the optimized structures further, we calculated the average bond lengths

and average coordination number for the ground state geometries and plotted them in

Fig. 5.7(a) and Fig. 5.7(b), respectively, as a function of cluster size. These two quanti-

ties are closely related to the structure of the cluster. We define the average bond length

as 〈r〉 = (1/nb)
∑

i>j rij, where rij is the bond distance between the j-th and i-th atoms,

and nb is the number of such bonds. Here we consider that two atoms are bonded if their

inter atomic distance is within 2.91 Å, which is around the average of the first (2.51 Å)

and second (3.54 Å) nearest-neighbour distances in bulk Co. The average coordination

number in a cluster is defined as 〈nc〉 = (1/n)
∑

k nk where nk is the number of neighbours
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Table 5.3: Theoretically calculated single channel bond dissociation energies (BDE) com-

pared with experimentally measured values in Ref. [33] for Con (n = 2-20). Experimental

uncertainties are within parentheses.

Con BDE(eV) Con BDE(eV)

Theory CID Expt. Theory CID Expt.

2 2.90 ≤1.32 12 3.77 3.41(0.28)

3 2.45 ≥1.45 13 3.61 3.68(0.31)

4 3.75 2.41(0.21) 14 3.89 3.12(0.36)

5 3.67 2.84(0.28) 15 4.43 3.84(0.39)

6 4.81 3.31(0.29) 16 4.38 3.82(0.39)

7 3.22 2.65(0.24) 17 4.40 3.44(0.44)

8 3.79 2.93(0.22) 18 4.26 3.84(0.56)

9 3.70 2.89(0.17) 19 4.54

10 3.08 3.05(0.16) 20 3.88

11 3.89 3.12(0.26)

within the chosen cut-off of the k-th atom in the cluster of n atoms. The convergence of

the average bond length to the bulk value (2.51 Å) is much faster than the convergence of

average coordination, which is far below the bulk value (12 for hcp Co). Dips at n = 6 and

9 in Fig. 5.7(a) indicate that the atoms in these clusters are closely spaced and strongly

bonded compared to the neighbours, and therefore are more stable than the neighbouring

structures. While the peaks at n = 5, 10 and 14 in Fig. 5.7(a) and at n =10 and 14 in Fig.

5.7(b) indicate that atoms in these clusters are far apart and slightly more coordinated

than their neighbours [36], which results in a weak bonding in these clusters compared to

their neighbours.

5.3.3 Understanding magnetic moments

The calculated magnetic moments are plotted in Fig. 5.8 as a function of cluster size

(n). The Co−Co interaction is always ferromagnetic for the entire size range studied,

as it is for hcp bulk Co. However, the magnetic moment (2−2.5 µB/atom) is larger

than the hcp bulk value, 1.72 µB/atom [31]. This enhancement in moment for a few
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atom cluster can readily be understood from the more localized d-electrons resulting from

the decrease in effective hybridization. The calculated magnetic moments are in fair

agreement with the very recent SG experiments by Xu et al [10] and Knickelbein [11].

Fig. 5.8 shows a qualitative agreement between the calculated and the experimental values

[10, 11, 29, 30] though the calculated moments are always underestimated systematically.

However, calculated moments are close to the values predicted by Xu et al [10, 30] for

the size range n =13-17 and in the size range n = 18-20 they are close to the values

predicted by Knickelbein [11, 29]. The underestimation of calculated moment may be

due to the fact that we did not include spin-orbit interaction in the present calculation.

Moreover, one should remember that the magnetic moments in a magnetic deflection

measurement are always derived assuming a model, which may influence the outcome.

For example, Knickelbein [11] used either superparamagnetic or locked moment model,

whether Xu et al [10] assumed an adiabatic magnetization model to derive the moments

experimentally for cobalt clusters. It is important to note that both experiments show

same size evolution in general but there are some systematic differences. However, this

is not due to the adoption of different models to calculate the magnetic moment as both

the models resemble with the same Curie law for magnetization [10, 11] but may be due

to different isomer distribution in the SG beam.

The magnetic moment is strongly correlated with the effective hybridization, which

is closely related to the average bond length 〈r〉 and the average coordination number

〈nc〉. As 〈nc〉 decreases the magnetic moment should increase through the decrease in
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effective hybridization. On the other hand, the dependency of magnetic moment on 〈r〉 is

directly proportional : a decrease in 〈r〉 results in decrease in magnetic moment through

the enhancement in effective bonding. Fig. 5.7(a) and Fig. 5.7(b) show that as we go from

n = 4 to n = 10, both 〈r〉 and 〈nc〉 increase, whereas Fig. 5.8 shows that the magnetic

moment per atom decreases. Therefore, between these two competing contributions (〈r〉
and 〈nc〉) to the magnetic moment, the average coordination number dominates over the

average bond length in the size range n = 4-10. In the size range, n = 11-20, the variation

of 〈r〉 (Fig. 5.7a) and 〈nc〉 (Fig. 5.7b) is much slower with n, and therefore, the magnetic

moment per atom does not vary rapidly. It is around 2 µB/atom for all the clusters in

this size range. So, in this size range, it is hard to predict the dominant parameter for

magnetism. To illustrate the effect of 〈r〉 and 〈nc〉 on the magnetism in this size range, we

compare these two quantities for the optimal hcp and icosahedral structures (see insets

(a) and (b) of Fig. 5.9). It is seen that for a hcp structure, both the 〈r〉 and 〈nc〉 are

smaller than those of corresponding icosahedral structure for a particular n-atom cluster.

In addition the magnetic moments of optimal hcp clusters are always larger than or equal

to that of the corresponding optimal icosahedral clusters (see Fig. 5.9), which again

demonstrates that in this size range also the coordination dominates over the average
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Figure 5.9: Comparison of magnetic moment between optimized hcp and optimized icosa-

hedral structures for Con in the size range n = 15-20. The filled squares and filled circles

correspond to results for hcp and icosahedral structures, respectively. The insets show

the corresponding comparisons for (a) average bond length and (b) average coordination

number.

bond length in deciding magnetism.

5.3.4 Comparison with other 3d transition metal clusters

For Con clusters, we have seen a clear trend in the optimized structures : it prefers hcp-

like symmetry over icosahedral symmetry in the size range n = 13-20. It is a very unusual

feature as the small clusters of other 3d transition metal elements generally prefer the

icosahedral growth pattern. For example, self-consistent pseudopotential calculation on

Mnn clusters (n = 2 - 20) by Kabir et al [37] showed a clear icosahedral growth in the size

range n = 11 - 20. Same trend has also been reported by Briere et al [38]. Icosahedron

or bcc rhombic dodecahedron structure for Fe clusters have been indicated previously

[39, 40]. Nayak et al [41] reported icosahedral packing for Nin (n ≤ 23) clusters while

Lathiotakis et al [42, 43] showed icosahedral or fcc-like ground states for Nin with n ≤ 55.

Copper having closed d shell and a single valance s electron, behaves like alkali metals

and the icosahedral packing in small Cun clusters is, therefore, more probable, which is

supported by the work of Kabir et al [44] using molecular dynamic method and by Winter
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et al [45] from experimental study with exception of the study by Guvelioglu et al [46]

which predicts somewhat different type of packing for the ground state structures of Cun

(n = 12-15).

In order to understand why cobalt clusters prefer the hcp structure even at cluster

size n < 20, while the clusters of other 3d late transition metal elements apparently prefer

icosahedral structures, we have repeated the same calculation for Fen clusters in the

size range n = 13-20. That means we have considered the different hcp and icosahedral

symmetry based initial structures for each size and allow them to relax for all possible spin

configurations to determine the minimum energy structures. In the following we present

the results of our preliminary investigation. Fen clusters have reportedly larger magnetic

moment than that of the same sized Con clusters [47], as it is in bulk. We also find

larger magnetic moments of the minimum energy Fe clusters than that of Co clusters, but

the interesting point of our structural relaxation calculation is that unlike Con clusters,

Fen clusters prefer to adapt icosahedral growth pattern for each of the minimum energy

structures in the size range of our interest. Table 5.4 contains the cohesive energy of the

Table 5.4: Cohesive energies of the optimal hcp and optimal icosahedral structures for

both Con and Fen clusters (n = 13-20) in the spin-polarized calculation. It is clearly seen

that while Con clusters prefer hcp-like symmetry, Fen clusters favor icosahedral growth

pattern. Number in the parenthesis is the total magnetic moment of the optimal structure.

Magnetic Con clusters Magnetic Fen clusters

Cluster Cohesive energy (eV) Cluster Cohesive energy (eV)

size hcp icosa size hcp icosa

Co13 42.630 (25) 42.460 (31) Fe13 41.509 (42) 42.789 (44)

Co14 46.515 (28) 46.520 (28) Fe14 45.058 (42) 46.133 (46)

Co15 50.950 (31) 50.780 (29) Fe15 50.228 (46) 50.278 (48)

Co16 55.330 (34) 55.010 (30) Fe16 53.280 (50) 54.152 (50)

Co17 59.730 (35) 58.920 (35) Fe17 57.144 (54) 58.037 (52)

Co18 63.990 (36) 63.420 (36) Fe18 61.891 (56) 62.161 (56)

Co19 68.530 (39) 67.310 (37) Fe19 64.356 (58) 66.256 (58)

Co20 72.410 (40) 71.300 (38) Fe20 68.210 (60) 69.610 (60)

optimal hcp and optimal icosahedral structures for both Con clusters and Fen clusters
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Table 5.5: rms distortions of the optimal hcp and optimal icosahedral structures for

both Con and Fen clusters (n = 13-20) in the spin-polarized calculation. Less distorted

structures appear as more stable.

Magnetic Con clusters Magnetic Fen clusters

Cluster rms distortions Cluster rms distortion

size hcp icosa size hcp icosa

Co13 0.070 0.057 Fe13 0.101 0.080

Co14 0.068 0.079 Fe14 0.107 0.084

Co15 0.036 0.073 Fe15 0.100 0.075

Co16 0.058 0.077 Fe16 0.125 0.083

Co17 0.054 0.110 Fe17 0.129 0.076

Co18 0.046 0.118 Fe18 0.113 0.089

Co19 0.043 0.073 Fe19 0.121 0.096

Co20 0.072 0.087 Fe20 0.123 0.095

(n = 13-20). In order to understand the optimal structures and the distortions imparted

to them after relaxation, we have calculated the average rms distortion of the bond lengths

and the results are listed in table 5.5. We find that less distorted structures appear to

be more stable. Nevertheless, the fact remains that Fe and Co clusters show different

types of structural preference. Fe atom has one more unpaired electron than Co atom,

consequently magnetism of Fe clusters, in general, is larger than that of Co clusters. To

investigate the role of magnetism, we have therefore carried out nonmagnetic calculation

as well by optimizing the hcp and icosahedral structures. The cohesive energies of the

optimal hcp and optimal icosahedron in the nonmagnetic phase for each cluster size have

been listed in table 5.6 for both Con and Fen clusters. Surprisingly, we have found that

all Fe-clusters in this size range, now stabilize in hcp phase, while few Co-clusters (Co17-

Co20) stabilize in hcp phase and few (Co13-Co16) prefer to stabilize in icosahedral phase.

This means that switching on of the magnetism changes the stable phase of Fen clusters

from hcp to icosahedral symmetry, while it enhances the possibility of stabilizing the hcp

phase in case of Con clusters. It is therefore indicating that higher value of magnetism of

Fe-clusters is somehow playing the role in stabilizing the icosahedral pattern in magnetic

phase.
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Table 5.6: Cohesive energies of the optimal hcp and optimal icosahedral structures for

both Con and Fen clusters (n = 13-20) in non-magnetic calculation.

Nonmagnetic Con clusters Nonmagnetic Fen clusters

Cluster Cohesive energy (eV) Cluster Cohesive energy (eV)

size hcp icosa size hcp icosa

Co13 36.480 37.250 Fe13 33.439 32.339

Co14 40.400 40.810 Fe14 36.653 35.703

Co15 44.400 44.510 Fe15 40.368 39.108

Co16 47.997 48.120 Fe16 43.752 42.672

Co17 52.010 51.760 Fe17 47.247 46.614

Co18 55.880 55.460 Fe18 51.161 49.537

Co19 59.830 59.370 Fe19 54.856 52.796

Co20 63.060 63.020 Fe20 57.690 56.080

Our calculated density of states also points to the same signature which we got from

energetics. Fig. 5.10 shows the calculated density of states of the optimal hcp and

optimal icosahedral structures of 19-atom Co and Fe clusters, both in nonmagnetic as

well as magnetic phases. First of all, each cluster shows finite DOS at the Fermi energy.

Nonmagnetic DOSs have peaks at Fermi energy showing the instability towards magnetic

solution according to Stonor’s criteria. It is also seen that nonmagnetic icosahedral DOS

has two peaks around Fermi energy and peak height is larger than that of hcp DOS, for

both Co19 and Fe19. This may be the possible reason behind the preference of hcp-like

structure over the icosahedron-like structure of Co19 and Fe19 clusters in nonmagnetic

phase. In magnetic calculation, DOS is much more illustrative for comparison of relative

stability between the two structures. For Co19 cluster, magnetic icosahedral DOS has

large peaks at the Fermi energy compared to peaks in magnetic hcp DOS, indicating

less stability of icosahedral structure. On the other hand, both icosa and hcp DOSs of

magnetic Fe19 cluster have dips at the Fermi energy. However, curvature of icosahedral

dip is higher and shifted towards lower energy. This indicates the higher stability of

icosahedral structure over the hcp structure for magnetic Fe19 cluster.

We have also repeated the same calculation for other three 3d transition metal ele-
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Figure 5.10: Plot of density of states (DOS) (with half-width = 0.1 eV) of the optimal

hcp and optimal icosahedral structures of Co19 and Fe19 clusters, both in nonmagnetic

phase (left panel) and magnetic phase (right panel). Energy along x-axis is with respect

to Fermi energy of the corresponding system. Magnetic DOS is averaged out between

majority and minority channels.
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ments: Mn, Ni and Cu, only for 19 atom cluster size. In Mn19 cluster, Mn-atoms have

very large local magnetic moments [37], while Ni clusters are known to have very fragile

magnetic moment [41, 48] and Cu clusters are almost nonmagnetic [46, 49, 50]. It is to

be noted that ground states of Mn-clusters are reported to have non-collinear magnetic

distribution [51], while our calculation is purely collinear. Fig. 5.11 shows the cohesive

energies of the optimal hcp and optimal icosahedral structures for Mn19, Ni19 and Cu19

along with Fe19 and Co19, both in nonmagnetic and magnetic phases. Again we see that

nonmagnetic Mn19 stabilizes in hcp structure, while switching on of magnetism stabilizes

the icosahedral structure over hcp structure. For Ni19 and Cu19, the magnetism has almost

no role and hcp and icosahedral structures are energetically almost degenerate.

5.4 Summary and Conclusions

Two recent SG experiments on magnetic moment measurement of smaller size cobalt

clusters [10, 11] have motivated us to carry out a detail first-principles study on pure Con

clusters (n = 2-20). As geometrical structure of clusters is an integral part in explaining
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any electronic property like magnetism, we have firstly carried out an exhaustive study

to determine the actual ground state structures for each cluster size. The calculated

magnetic moments of the ground state structures are found to be higher than that of the

corresponding hcp bulk value and follow the same trend as found in the S-G experiments.

An unusual hcp growth pattern has been observed in the ground state structures of Co-

clusters, unlike small clusters of other 3d transition metals, for example Mn and Fe, usually

adopt icosahedral growth pattern. However, in nonmagnetic phase, all of them have a

tendency to adapt hcp-like structure. Therefore, the magnetism is supposedly playing a

key role in deciding the favorable structural pattern.
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Chapter 6

Structure, reactivity and electronic properties of

V-doped Co clusters

In this chapter, we have carried out a detailed first-principles based study on structures

and physico-chemical properties of V doped Co13 clusters. Our study nicely demonstrate

the anomalous variation in reactivity towards H2 molecules as reported experimentally.

Moreover, it provides useful insight into the cluster chemical reactivity, which may help

to design better catalytic processes. 1

6.1 Introduction

The interest in studies of clusters is largely because of their technological applications as

well as the possibilities of developing novel cluster-based materials using the size depen-

dence of their properties. Doping of clusters is an important possibility in this direction. In

recent times the fabrication of alloy clusters of different sizes with well defined, controlled

properties by varying the composition and atomic ordering, has caught considerable at-

tention. Bimetallic alloy clusters have been known and exploited for last few years in

various catalytic reactions [1]. Varying the ratio of the two constituents, the distribution

of the compounds at the surface may be altered. In this way, it is possible to tune the

chemical reactivity at the surface of an alloyed cluster [2]. Few years before, Nonose et al

[3] measured the reactivity towards H2 of bimetallic ConVm (n > m) clusters using a laser

1This chapter is based on the following paper:

Soumendu Datta, M. Kabir, T. Saha-Dasgupta and A. Mookerjee; Structure, reactivity and electronic

properties of V-doped Co clusters (Under preparation)
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vaporization technique and reported strong cluster size and composition dependence of

reactivity. Both V and Co are 3d transition metals. As V is located towards the left-hand

side of periodic table, the substitution of Co by V atoms, one by one, should increase

the reactivity of the alloy cluster towards H2 molecules, as the left hand element V has

a high reactivity towards H2 in contrast to Co which has relatively low reactivity [4].

Fig. 6.1 shows the change in reactivity of Con−mVm (n = 6, 8, 10, 11, 13; m = 1 - 4)

clusters with H2 molecules as reported in Ref. [3]. It is seen that for Co6, Co8, Co10 and

Co11, the reactivity increases gradually as one substitutes the Co atom by V atom one

by one, but for Co13, there is a remarkable decrease in reactivity when a single Co atom

is substituted by a V atom. However, the reactivity increases as the number of exchange

V-atoms increase further upto m = 3, while the fourth V-atom substitution does not

increase the reactivity any more. This indicates that somehow the geometrical structure

of Co12V cluster becomes very rigid. In view of the high reactivity of elemental V, this

sudden drop of reactivity of Co12V cluster was rather surprising. The authors speculated

a plausible icosahedral structure for Co12V cluster with the active V atom at the cage

centre. Therefore, the V atom, being shielded geometrically from H2 by twelve surface

Co atoms, might have less chance to interact with H-atoms. The chemisorption reactivity

of cationic Co13−mV+
m clusters [5] and anionic Co13−mV−

m clusters [6] also shows similar

type of variation as that of neutral Co13−mVm clusters, which hints towards the dominant

effect of geometric structure as compared to electronic structure. For clusters, the ion-

ization potential (IP) depends on the position of the HOMO electronic level and for pure

metal clusters, Whetten et al [7] have postulated that the reaction rate for cluster - H2

dissociative chemisorption is determined by the charge transfer from HOMO to LUMO or

antibonding orbital of the reactant gas, such as H2, in which an anti-correlation between

IP and reaction coefficient could be observed. That means lower value of IP corresponds

to higher reactivity and vice versa. However, ionization energies of ConVm clusters by

Hoshino et al [8] using photo-ionization spectroscopy show no such anti-correlation, again

demonstrating the importance of geometrical structure. A rigorous first-principles study

in terms of geometric and electronic effects is therefore very much needed to understand

the anomalous nature of reactivity of Co13−mVm (m = 0-4) clusters. In this chapter,

we have carried out an ab-initio theoretical study on V doped Co13 clusters. Our study
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consists of three major parts : first part consists of an exhaustive search for minimum

energy structures for cluster of each composition, followed by stability analysis of these

minimum energy structures in terms of various physical quantities in the second part,

while the final part is an investigation of chemisorbed structures and understanding of

cluster reactivity.

Figure 6.1: The reactivity of Con−mVm (n > m) clusters for reaction with H2. Open

circles, closed circles, open squares, open triangles, and closed triangles correspond to

measured values for n = 6, 8, 10, 11 and 13, respectively. (adopted from Ref. [3])

6.2 Computational Details

The calculations have been performed using density functional theory, within the pseu-

dopotential plane wave method. We have used the PAW pseudopotentials and PBE

exchange-correlation functional for spin-polarized generalized gradient approximation.

The 3d and 4s electrons were treated as valence electrons for the transition metal ele-

ments and the wave functions were expanded in the plane wave basis set with the kinetic

energy cut-off of 335 eV. Reciprocal space integrations were carried out at the Γ point.

Symmetry unrestricted geometry and spin optimizations were performed using conjugate

gradient and quasi-Newtonian methods until all the force components were less than a
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threshold value of 0.005 eV/Å. Simple cubic super-cells were used with the periodic

boundary conditions, where two neighbouring clusters were kept separated by at least

12 Å vacuum space to make the interaction between the cluster images negligible. The

cohesive energy (Ec) of a ConVm alloy cluster was defined as

Ec(ConVm) = mE(V ) + nE(Co) − E(ConVm) (6.1)

where E(ConVm), E(Co) and E(V) were the total energies of ConVm cluster, an isolated

Co atom and an isolated V atom respectively. The second difference in energy for fixed

size (n+m = constant) and variable composition was defined defined as

∆2E(ConVm) = E(Con+1Vm−1) + E(Con−1Vm+1) − 2E(ConVm) (6.2)

It gives the relative stability of alloy clusters having nearby compositions.

6.3 Structure

Since chemical reaction of clusters takes place around the surface, the atomic arrangement

and composition on the surface play an important role in chemical reactivity of alloyed

clusters. Therefore, the first step towards theoretical modeling of alloy clusters is to

determine their ground state structure. For V doped Co clusters ( Co13−mVm; m = 1-

4) also, we have followed the same way of structural optimization as we did for pure

Co clusters in the previous chapter. That means we have considered several probable

starting geometries having closed packed atomic arrangement and allowed each geometry

to relax for all possible collinear spin configurations of atoms to determine the ground state

structure having optimized geometry as well as optimized magnetic moment. However,

the situation for alloy clusters is quite cumbersome as one has to deal with large number

of starting geometries because of the presence of homotops (the term was first introduced

by Jellinek [9, 10]). The homotops have the same number of atoms, composition and

geometrical structure, but differ in the arrangement of doped atoms. For an ConVm alloy

cluster with fixed number of atoms (N = m + n) and composition (m/n ratio), a single

geometrical structure will give, in principle, N !
m!n!

homotops. However, many of them may

be symmetry equivalent and the number of inequivalent homotops will be much less than
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the above mentioned value. So the variety of structures in alloy clusters is much richer

than that of pure clusters and the potential energy surface of even a small clusters of few

tens of atoms is of enormous complexity.

It is found that transition metal clusters prefer compact geometries to maximize the

interaction between the rather localized d orbitals [11]. For cluster of 13 atoms, the three

most compact and highly coordinated structures are the icosahedron, the cub-octahedron

and the hexagonal closed packed geometries and they are usually found to be the ground

state structures for pure transition metal clusters (cf. previous chapter). We have there-

fore considered these three geometries as the most probable starting structures. For pure

Co13 cluster, the minimum energy state is a distorted hcp structure with total magnetic

moment of 25 µB and total cohesive energy 42.632 eV as we mentioned in the previous

chapter. The structure has 22 triangular faces and 33 edges (cf. Fig. 6.2). Another

distorted structure of hcp motif with total magnetic moment of 27 µB and 0.14 eV above

the minimum energy state, is the first isomer. The optimal icosahedral structure of total

spin 31 µB (structure having 20 triangular faces and 30 edges) is 0.17 eV higher than

the minimum energy state and emerges as second isomer. Third isomer is a distorted

cub-octahedron with total magnetic moment 25 µB and it is 0.22 eV above the minimum

energy state. Ground state, second and third isomers are shown in Fig. 6.2. It is to be

noted that for pure Co13 cluster, all atomic moments are ferromagnetically coupled.

Figure 6.2: Structures of optimal hcp, icosahedron and cub-octahedron of pure Co13

cluster (from left to right respectively). Optimal hcp structure is the minimum energy

state.

In case of single V atom doped Co12V clusters, we have again considered the starting

geometries of icosahedral, hcp and cub-octahedral symmetries, but depending upon the

position of the singly doped V-atom at the centre position or on the surface, it can
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give rise to several homotops. Again for each of the hcp and cub-octahedral geometries,

there are two types of surface atoms in terms of orientation of the neighbours, while for

icosahedral structure, all surface atoms are equivalent. So we have considered all these

possible geometrical structures and for each of them, we have considered all possible

collinear spin alignments during relaxation. Upon optimization of geometry and spin

degrees of freedom, we found that an icosahedral structure of total magnetic moment 25

µB, with V atom doped at the centre position, is the minimum energy structure. There

are several interesting points to note in this connection. First of all, the cohesive energy

of this minimum energy structure is considerably higher (by 1.294 eV) than that of pure

Co13 clusters, indicating its exceptional stability. V doped Co-clusters are found to prefer

icosahedral growth pattern, instead of hcp growth pattern, as we observed in case of pure

Co-clusters in the previous chapter. The single V-atom likes to be at the centre of the

icosahedron and it is ferrimagnetically coupled with the the surface Co-atoms. The first

isomer is also a central V-atom doped icosahedral Co12V cluster, with total magnetic

moment 23 µB and it is about 0.46 eV above the minimum energy structure. Center

V doped cub-octahedral Co12V cluster with 23 µB magnetic moment which has energy

0.70 eV higher than minimum energy icosahedral structure, is the second isomer. Third

isomer is a centre V doped icosahedron with total magnetic moment of 27 µB. Center

V doping in case of hcp cluster is less favourable and appears as fifth isomer in our

calculation with total magnetic moment 25 µB and energy 0.80 eV above the minimum

energy structure. We also have considered the optimal structure of Co13 (distorted hcp)

as starting structure and substituted the most coordinated central Co-atom by V-atom.

After relaxation considering all possible spin alignments, it is seen that the shape of

the optimal structure remains more or less same as that of optimal hcp Co13 cluster

and energetically, it is the fourth isomer with total magnetic moment 23 µB. The most

probable surface V-doping has a cub-octahedral structure with total magnetic moment

21 µB, but it is about 1.32 eV above the minimum energy structure. The structure of

ground state and few isomers for Co12V cluster are shown in Fig. 6.3.

Because of icosahedral growth preference and as the singly doped V-atom prefers the

central site in case of Co12V cluster, for more than one V atom doping, we consider only

icosahedral structure and one V atom is definitely at the centre position, while residual
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Figure 6.3: Structures of optimal icosahedron (minimum energy state), optimal cub-

octahedron (2nd isomer) and hcp (4th and 5th isomers) (from left to right) for Co12V

cluster. Green dot represents Co atom, while yellow dot represents V-atom. Same con-

vention is followed in next three figures.

V atoms reside on the surface. For Co11V2 cluster, the second V atom can replace any

of the surface Co atom, as all surface sites of a 13-atom icosahedron, are equivalent.

After relaxation for all possible spin configurations, it is found that the minimum energy

structure has total magnetic moment 19 µB and total cohesive energy 43.217 eV. The first

and second isomers have magnetic moments 21 µB and 17 µB and they are 0.1 eV and

0.25 eV above the minimum energy state respectively. In the minimum energy structure,

the centre V-atom is again ferrimagnetically coupled with surface Co atoms and has

low magnetic moment like Co12V cluster, while the surface V atom has maximum local

magnetic moment and it is also ferrimagnetically coupled with other surface Co atoms.

(A) (B) (C)

Figure 6.4: A, B, C represent the three inequivalent homotops in icosahedral Co10V3

structure having one V-atom always at the centre. The three structures are the optimal

structures for the three types, however, type A is the most probable.

For Co10V3 cluster, depending upon the different positions of the two surface V atoms,

there are three possible icosahedral structures as shown in Fig. 6.4. However, structure

of type A where two surface V atoms are closest to each other, is the most favourable.

Type A icosahedral structure with total magnetic moment 21 µB is the minimum energy
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state with ferrimagnetic coupling of central V-atom and ferromagnetic coupling of surface

V-atoms with surface Co-atoms. Both central and surface V-atoms have small magnetic

moments in this case. There are several closely spaced isomers of type A icosahedron

with magnetic moments 19 µB, 13 µB, 23 µB and 17 µB which are just 0.038 eV, 0.079

eV, 0.09 eV and 0.15 eV above the minimum energy structure. The optimal structures

of type B and type C are 0.204 eV and 0.313 eV above the minimum energy structure,

respectively and both of them have same total magnetic moment of 13 µB.

(A) (B) (C) (D)

Figure 6.5: A, B, C, D represent the four probable homotops in icosahedral Co9V4 struc-

ture having one V-atom at the centre and two other V-atoms are closest to each other on

the surface, while the position of fourth V-atom is varied. The four structures represented

above are the optimal structures for the respective four types. However, type A is the

most probable.

For Co9V4, there are three V atoms on the surface. Considering two surface V atoms

closest to each other (being tempted by the ground state configuration of Co10V3), differ-

ent positions of third surface V atom can give rise to the four icosahedral configurations

as shown in Fig. 6.5. After optimization, we found that type A is the most favourable

structure where all the three surface V atoms are closest to each other and form an octa-

hedron with the central V atom. The optimal structure of type A icosahedron has total

magnetic moment 15 µB and total cohesive energy 42.350 eV. Another type A icosahe-

drons with magnetic moments 13 µB, 19 µB, 21 µB and 17 µB are just 0.029 eV, 0.071

eV, 0.094 eV and 0.125 eV away. Optimal type B, type C and type D icosahedrons have

total magnetic moments 15 µB, 13 µB and 15 µB respectively and they are 0.15 eV, 0.25

eV and 0.33 eV above the minimum energy structure.

It is therefore seen from our structural optimization that unlike hcp growth pattern of

pure Co cluster, the V doped Co13 clusters prefer to adopt icosahedral packing. In such



Chapter 6. Electronic structure and transport properties of nano-materials 114

clusters, the most coordinated central site is occupied by a V-atom, while the residual

V-atoms sit on the surface. The surface V-atoms like to be closer to each other to

form group, thereby imparting more distortion to the structure and significantly alter the

local surface charge density. The central V-site in the minimum energy structures of all

compositions, is always ferrimagnetically coupled and has lower magnetic moment. On

the other hand, surface V-atoms can be ferrimagnetically or ferromagnetically coupled

with surface Co-atoms and their local magnetic moments can be as low as central V-site

or as high as surface Co-site, depending upon the distribution of surface charge density.

Our prediction of icosahedral geometry for minimum energy states of V doped Co clusters

is in accordance with the speculation of a closed shell geometry around a central site in

Ref. [3, 5].

6.4 Stability analysis

The observed atomic arrangement of the minimum energy structures of Co13−mVm clusters

as described in the previous section depends critically on the balance of several parameters,

like the relative strengths of various kinds of bonds present in the structure (for example,

V doped Co clusters have maximum three types of bonds: Co-Co, Co-V and V-V bonds),

relative atomic sizes, amount of charge transfer between two different species of atoms,

HOMO-LUMO gap, abundance of states near Fermi energy etc. Below, we will try to

understand the structural stability of clusters in terms of these parameters.

6.4.1 Cohesive energy

Fig. 6.6 shows the plot of cohesive energy of the minimum energy structures of Co13−mVm

clusters with increasing V concentration. With single V atom doping, the binding of the

minimum energy cluster has increased considerably compared to optimal Co13 cluster.

However, cohesive energies decrease sharply for higher concentration of V-atoms. For

double and triple V-atom doping, the cohesive energies are above the dashed line indicat-

ing their more stability compared to pure Co13, while for fourth V-atom doping, cohesive

energy is even lower than that of pure Co13. In order to see the relative stability among the

nearby concentrations distinctly, we have plotted the second difference in cohesive energy
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Figure 6.6: Cohesive energy of the minimum energy structures of Co13−mVm clusters with

respect to the cohesive energy of optimal Co13 cluster. The dashed line is the reference

fixed at the cohesive energy of optimal Co13. Inset shows the second difference (∆2E) in

cohesive energy [as defined in Eqn. (6.2)] for Co12V, Co11V2 and Co10V3.

in the inset of Fig. 6.6. Again the sharp pick at m = 1 signals to the exceptional stability

of single V-doped cluster compared to undoped or more than one V-doped clusters.

Table 6.1 shows our calculated cohesive energy and bond length of Co-Co, Co-V and

V-V dimers. It is seen that V2 dimer is the most stable and the bond length of V2

dimer is also about 14% shorter than that in Co2 dimer, while the cohesive energy and

bond length of Co-V dimer are intermediate of Co2 and V2 dimers. For a bimetallic

cluster, it is commonly found that if one of the homo-nuclear bonds is the strongest,

then that species tends to be at the centre of the cluster. The highest stability of V2

dimer therefore indicates the natural preference of central site by V-atom in V doped Co

clusters. Also, smaller atoms tend to occupy the more sterically confined core, especially

in icosahedral clusters. However, the radius of V atom is almost same as that of a Co

atom and consequently, the substitution of central Co atom in icosahedral Co13 cluster by

a V atom leaves the structure almost unaltered. In the optimal icosahedral structure of

Co13, the centre to vertex average distance is 2.334 Å and the average distance between

two nearby vertices on the surface is 2.45 Å. For optimal Co12V cluster, these values are
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Table 6.1: Our calculated cohesive energy and bond length of Co2, Co-V and V2 dimers.

For comparison, we have also listed the experimental values for Co2 dimer (Ref. [12]) and

V2 dimer (Ref. [13]).

Dimer Cohesive energy (eV/atom) Bond length (Å)

Theory Expt. Theory Expt.

Co2 1.45 1.72 1.96 2.31

CoV 1.53 . . . 1.87 . . .

V2 1.81 2.47 1.72 1.77

Table 6.2: The average distances in Å between centre to vertex and between two nearby

vertices for the minimum energy structures of all the studied clusters. For Co13, the values

correspond to the optimal icosahedron.

Bonds Co13 Co12V Co11V2 Co10V3 Co9V4

centre-vertex 2.334 2.344 2.354 2.375 2.398

vertex-vertex 2.455 2.465 2.476 2.499 2.509

2.344 and 2.465 Å respectively. The large gain in cohesive energy in Co12V cluster over

that of Co13 cluster is therefore due to enhanced cohesive energy of CoV dimer over that

of Co2 dimer. The V atom being at the centre position, there are maximum number of

CoV dimers in Co12V cluster.

For clusters having more than one V-atom doping, the central site is always possessed

by a V-atom and the other V-atoms lie on the surface. With increasing V concentration

on the cluster surface, the local environment of different surface sites becomes different

which controls the overall cluster geometry and plays a crucial role in stability. The

centre V-atom to surface V-atom distance in the minimum energy structure of Co11V2

icosahedron is 2.557 Å, however overall average centre to vertex distance is lower, 2.354

Å and average distance between two nearby vertices is 2.476 Å. For Co10V3 and Co9V4

clusters, surfaces have 2 and 3 V-atoms respectively, each having three types of surface

bonds: V-V, V-Co and Co-Co. As the number of surface V-atoms increases, bond lengths

become highly dispersive and the structures become more and more strained which can

be realized from some open bonds in Fig. 6.4 and Fig. 6.5. In the minimum energy
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structure of Co10V3 [cf. Fig. 6.4(A)], the average centre to vertex distance is 2.375 Å

and the average distance between two nearby vertices on the surface is 2.499 Å. However,

centre to vertex V-V average distance is 2.625 Å and average distance between two surface

V-atoms is 1.890 Å. Similar trend has been found for minimum energy structure of Co9V4

[cf. Fig. 6.5(A)] where centre to surface V-V average distance is 2.660 Å and the average

V-V bond length on the surface is 2.270 Å, while overall centre to vertex and vertex to

vertex average distance are 2.398 Å and 2.509 Å respectively. In table 6.2, we have listed

the average distances between centre to vertex as well as between two nearby vertices

for the minimum energy structures of Co13−mVm (m = 0-4) . Interestingly, it is found

that with the increase of V-concentration, both the distances are increasing, i.e cluster

volume increases which decreases the binding. Therefore, though the number of V-V

bonds increases, which has better binding compared to Co-Co or Co-V bonds, the overall

cohesive energy decreases monotonically as we go from Co12V to Co9V4 by successive

doping of V-atoms. It is then obvious that cluster geometry and the distribution of atoms

on the cluster surface play an important role in deciding the cluster stability.

6.4.2 Spin gap

Analogous to HOMO-LUMO gap of a nonmagnetic cluster, one can define spin gaps for

a magnetic cluster as,

δ1 = −
[
ǫmajority
HOMO − ǫminority

LUMO

]

δ2 = −
[
ǫminority
HOMO − ǫmajority

LUMO

]
(6.3)

and the system is said to be stable if both δ1 and δ2 are positive i.e the LUMO of the

majority spin lies above the HOMO of the minority spin and vice versa. These represent

the energy required to move an infinitesimal amount of charge from the HOMO of one spin

channel to the LUMO of the other. The positions of HOMO and LUMO in both the spin

channels and the values of δ1 and δ2 for the optimized structures of 13-atoms clusters of all

compositions considered here are given in table 6.3. It is seen that both the spin gaps δ1

and δ2 are positive for all the clusters. Also Co12V has maximum value of δ’s which again
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Table 6.3: Positions of HOMO and LUMO in both the spin channels and the values of δ1
and δ2 for the optimized structures of all compositions.

clusters Majority channel Minority channel Spin gaps (eV)

HOMO LUMO HOMO LUMO δ1 δ2
Co13 -3.602 -3.354 -3.480 -3.336 0.266 0.126

Co12V -3.930 -2.610 -3.387 -3.337 0.592 0.777

Co11V2 -3.712 -2.832 -3.426 -3.321 0.391 0.594

Co10V3 -3.407 -2.982 -3.336 -3.256 0.151 0.354

Co9V4 -3.457 -3.024 -3.325 -3.174 0.283 0.300

indicates the highest stability of Co12V cluster compared to the others. Because of this

large spin gap, Co12V has very low reaction tendency towards H2 molecules. However,

gap values decrease with increasing V concentration and therefore reactivity increases as

observed experimentally [3].

6.4.3 Density of states

Fig. 6.7 shows the total density of states as well as total Co-contribution and total V-

contribution for the minimum energy geometries of Co12V, Co11V2, Co10V3 and Co9V4

clusters. Total d-projected DOS is also shown for each case. Close resemble between

total DOS and total d-DOS indicates that cluster properties are mostly dominated by

d-electrons. Structural stability of clusters as discussed in the previous section, is also

obvious from the nature of total DOS. Majority spin channel of each cluster has a gap

in DOS. This gap is maximum for Co12V and it decreases as number of surface V-atoms

increased. In the minority spin channel, there is finite amount of states at the Fermi energy

and these are contributed solely by the exterior surface atoms, as the central atom does not

have any contribution at the Fermi energy (cf. Fig. 6.8). It is also seen that for Co12V,

states are more localized and with increasing V-concentration, total DOS is gradually

spreading out and DOS height, specially in the majority spin channel, decreases. This

exceptional stability of Co12V cluster towards H-adsorption is analogous to facts observed

in case of extended surface : photoemission experiments by El-Batanouny et al [14] showed

that a H atom adsorbed well both on the clean Nb(110) surface as well as on the surface
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with a multilayer of Pd, but did not adsorb on Nb(110) surface with a monolayer of Pd

and they showed this was due to the decrease of density of states of d-electrons of Pd near

the Fermi level. Similar behaviour had been observed also in case of a monolayer of Pd

on W(110) surface, in the experiment of CO-adsorption [15]. Equivalently, the central V

atom of Co12V corresponds to an early transition metal substrate and the exterior twelve

Co atoms correspond to a late transition-metal monolayer.

In order to see the chemical activity of the central V-atom, we have plotted in Fig. 6.8,

the total DOS of the central V-atom for each of the Co13−mVm clusters. First of all, there

is no finite states at Fermi energy, meaning central V-atom is not chemically active. It is

seen that for all clusters, each of the majority and minority spin channels has two large

pecks: one is deep below the Fermi energy and another is above Fermi energy. However,

peck heights gradually decrease and states are broadened out and shifted towards higher

energy with increasing V-concentrations. This means that presence of surface V-atoms

induces some sort of chemical activeness to the central atom.

6.5 Chemisorption with H2 molecules

In order to gain some understanding about the cluster chemical reactivity, we will inves-

tigate in this section the chemisorbed structures of Co13−mVm clusters upon H2 uptake.

To check the robustness of our chemisorption calculations involving H-atoms, first we

have calculated the cohesive energy, bond length and vibrational frequency of H2 dimer.

Our calculated values have been listed in table 6.4. These values are typical for gradient-

corrected calculations of H2, which have been done before [16] and they agreed reasonably

well with experiment [17].

Table 6.4: Our theoretically calculated cohesive energy, bond length and vibrational fre-

quency for H2 dimer. Experimental values in Ref. [17] are also given for comparison.

Cohesive energy (eV) bond length (Å) Vibrational frequency (cm−1)

Theory 4.520 0.752 4339

Experiment 4.750 0.741 4395
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Figure 6.7: Total DOS per atom (black curve), total Co DOS per atom (green curve),

total V-DOS per atom (red curve) and total d-projected DOS per atom (orange curve)

for the optimal structures of Co12V, Co11V2, Co10V3 and Co9V4. The smearing width is

fixed at 0.1 eV. Vertical line through zero is the Fermi energy.
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We have then performed an exhaustive search for minimum energy structure, tak-

ing H2 at different possible places on the minimum energy structure of the correspond-

ing bare cluster for each composition. Fig. 6.9 shows our calculated lowest energy

chemisorption structures with H2 for all compositions. First thing to notice is that H2

molecule chemisorbs dissociatively in each case, i.e the distance between two H-atoms

in the chemisorption structures is much larger than the H-H bond length of isolated H2

molecule. The chemisorption gives rise to moderate perturbation to the structures and

makes them more symmetric (i.e surface bonds are now less dispersive) by reducing the

centre to surface V-V distance and increasing the surface V-V distance. There are three

possible ways for H-atoms to be adsorbed on each cluster : on top of an atom (one fold),

at bridge position between two atoms (two fold) and at the hollow site of a triangular

plane on the cluster (three fold). Again, as the surface contains two species of atoms for

Co11V2, Co10V3 and Co9V4, then the one fold position can be on top of a surface V-atom

or on top of a surface Co-atom. Two fold position can be the top of a V-V bond, Co-V

bond or Co-Co bond. The Co-Co bond can be nearer to or away from V-site. Similarly,

in triangular plane, there are several possibilities : (i) all the three atoms can be V-atoms

(only possible for Co9V4), (ii) one Co atom and two V-atoms, (iii) two Co-atoms and one

V-atom, (iv) all three are Co-atoms. We have considered all these possible combinations

during optimization. It is, however, seen that in each optimized structure, H-atoms ab-

sorb at the hollow site on the surface and for m ≥ 2, they prefer the association with local

V. For example, in Co9V4H2 one V-atom absorbs at the hollow site of V-V-V triangular

plane and another on top of a V-V-Co triangular plane. For Co11V2H2, the H-atoms ap-

pear to absorb at the bridge positions, but they are inclined with an angle such that the

absorption tends toward a three fold configuration. The preference of more coordinated

hollow site is likely due to geometric arrangements. It allows the H-atom to interact

more with the V or Co atoms. On the other hand, V-site preference of H-atom is due to

formation of stronger s-d bond with V-atom compared to that with Co-atom.

Fig. 6.10 shows the plot of chemisorption energy with increasing V-concentration,

where the chemisorption energy is defined as

De(E) = E(Co13−mVm) + E(H2) −E(Co13−mVmH2) (6.4)

It shows a minimum for Co12VH2 indicating lowest binding efficiency of Co12V with H.
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Figure 6.9: The calculated minimum energy chemisorption structures with H2 on the

minimum energy structures of Co13−mVm (m = 0-4). It is clearly seen that hollow site on

the surface is preferred by chemisorbed hydrogen.

However, chemisorption energy increases with increasing V concentration. The source

of this chemisorption energy is the cluster rearrangement energy (i.e the energy change

due to the geometrical rearrangement of the cluster upon chemisorption) and the efficient

cluster-absorbate bonding in presence of V due to more efficient s-d hybridization.

6.6 Summary and Conclusions

To summarize, we have studied the geometric and electronic structures of V doped Co13

clusters and their chemisorption towards hydrogen molecules using first principles density

functional calculation. The lowest energy structures of all compositions prefer to have

icosahedral geometry, unlike hexagonal symmetry preference of pure Co clusters. For

Co12V cluster, the single V atom prefers to sit at the central site, thereby guarded by

all the surface Co atoms and cannot participate directly in the chemisorption reaction.

Consequently reactivity of Co12V becomes very less. On the other hand, for more than one

V atom doping, the additional V-atoms reside on the surface and come in direct contact

with chemisorbed H-atom and reactivity increases. Our calculated spin gaps and density

of states explain nicely the stability of clusters and their trend towards chemisorption. In

the chemisorbed structures, H-atoms adsorb dissociatively at the more coordinated hollow

sites and they prefer V-site association due to stronger 3d-1s hybridization. To have better

insight into the chemisorption reaction, one needs to study the transition states for the
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Figure 6.10: The calculated chemisorption energy of Co13−mVm.

optimal cluster of each composition and we believe that calculation of activation barriers

will lead to same conclusion as we have predicted here.
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Chapter 7

Recursive approach to study transport properties of

atomic wires

In this chapter, we will deal with 1D monoatomic wires and propose a recursive approach

to study their electrical transport properties. The proposed method is based upon a

real-space block-recursion technique with Landauer’s formula being used to express the

conductance as a scattering problem. To illustrate the method, we have applied it on

a model system described by a single band tight-binding Hamiltonian. Results of our

calculation therefore may be compared with the reported results on Na-atom wire. Upon

tuning the tight-binding parameters, we can distinctly identify the controlling parame-

ters responsible to decide the width as well as the phase of odd-even oscillations in the

conductance.1

7.1 Introduction

A mono-atomic quantum wire has a cross-section of one atom and is several atoms long.

Such a system can be formed by pulling atomic contacts using a scanning tunneling mi-

croscope (STM) or a mechanically controllable break junction (MCBJ). The experimental

evidences of formation of such atomic wires have been reported by Yanson et al [1] and

Ohnishi et al [2]. However, issues involving electronic structure, transport properties and

the influence of contacts with macroscopic leads or electrodes are still not fully settled.

1This chapter is based on the following paper:

Soumendu Datta, T. Saha-Dasgupta and A. Mookerjee, Recursive approach to study transport proper-

ties of atomic wire, Eur. Phys. J. B, 66, 57 (2008).
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The most striking feature of such a mono-atomic wire is the non-monotonic behaviour

of its conductance as a function of the number of atoms along its length. Oscillatory

behaviour of conductance as a function of the length of the wire has been experimentally

observed in Al, Pt and Ir wires by Smit et al [3], in Au and Ag wires by Thijssen et al

[4], in Na wires by Krans et al [5] and in wires of atoms of higher valency by Yanson et

al [1]. This oscillatory behaviour has been attributed to interference effect resulting from

the changes in the connection between the wire and the edge of the electrode when new

atoms are pulled into the wire.

Theoretically, the conductance of atomic wires can be calculated using the Landauer

formalism in which one relates the conductance G in the linear response regime to the

transmittance at the Fermi energy, T (EF ), as : G = (e2/πh̄)T (EF ). There are sev-

eral numerical methods to calculate transmittance. They may be broadly classified into

wavefunction and Green function methods. In wavefunction technique, one solves for

scattering wavefunction of the system using methods like transfer matrix method [6]-[10],

finite difference method [11] or by solving Lippman-Schwinger equation [12, 13]. All these

methods use various level of approximations to describe the electronic structure of the

system, starting from semi-empirical models like extended Hückel [6, 7] to fully atomistic

descriptions based on DFT of Kohn and Sham. In most of the wave function methods,

however, the electronic structure of the scattering region is resolved in detail, while the

leads are modeled by a free electron gas [8, 9, 12, 13]. Alternatively, conductance can be

calculated by Green’s function method which does not require the explicit calculation of

the scattering wave function. The main effort in this approach is to calculate the Green

function of the central wire in the presence of the coupling to the leads. The effect of

coupling to the leads is taken into account through self-energy terms. Various methods

based on this approach, mainly differ in the choice of basis set used to represent the

Hamiltonian and self-energy matrix, e.g Gaussians [14], numerical atomic orbitals [15],

wavelets [16] and plane wave basis [17]. Although implementations within the Green

function as well as the wavefunction approaches have been carried forward using various

different techniques, it can be shown that the approaches are completely equivalent for

non-interacting electrons [18]. In this chapter, we propose a combination of the scalar and

vector recursion techniques [19]-[21] as a viable and efficient means to study the transport
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properties within the general scheme of wavefunction approach of a lead-wire-lead system.

As a first step, starting from the junction point of the leads and the wire, we have used

the recursion method of Haydock et al [19, 20] to map the quasi-1D semi-infinite leads

with finite extensions along lateral directions onto equivalent chains. In the process, the

information of the shape of the leads is encoded in the recursion coefficients. The recursion

coefficients converge and the asymptotic part of the chains (or terminators) resembles

periodic one-dimensional leads. This naturally divides the whole system unambiguously

into an effective scattering region and two attached ballistic, periodic chain leads. The

initial variation of the recursion coefficients contributes to the scattering region.

In the second step, the scattering matrix has been calculated by solving the Schrödinger

equation using the vector or block recursion method of Godin and Haydock [21] and

applying the wave-function matching conditions at the lead-wire interfaces.

In the final step, we have applied Landauer’s formula to express the conductance of the

quantum wire.

The advantage of the proposed method is that it is a real space based method. Moreover,

to solve the scattering problem, one does not need to calculate the wave function explicitly.

By putting the boundary conditions at the lead-wire junctions and at the end of vector

chain, one can directly calculate the scattering matrix. The basic inputs in the above

described procedure are the TB Hamiltonians for the wire and the leads. In order to

illustrate the method, we have applied it to a model system described by a single-band

TB Hamiltonian. We demonstrate the validity of this approach by comparing the results

obtained out of a simple model system with the reported results on monoatomic Na-

wire calculated from first-principles. Moreover, by tuning the TB parameters of the wire

and the leads we have provided a detailed understanding of the various features of the

problem beyond what has been reported earlier [22]-[30]. The proposed technique being

based on recursion, relies on the sparseness of the starting Hamiltonian. The coupling

of this method to fully atomistic DFT description of the electronic structure, however,

can be easily achieved in terms of Wannier function based Hamiltonian constructed out

of DFT calculations [17, 31].
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7.2 Method

7.2.1 Converting quasi-1D lead to effective 1D chain and detection of

effective scattering region

Each lead with finite lateral dimension of Nx × Ny is described by a Hamiltonian in a

tight-binding basis {|iµ〉} where i labels a site and µ a particular channel, e.g. in LCAO

type formulations, this would be the angular momentum labels (ℓ,m) :

Hlead =
∑

i,µ

∑

j,µ′

Ĥµµ′

ij |j, µ′〉〈i, µ|

Ĥµµ′

ij = ǫiµleadδµµ′δij + tiµ,jµ′

lead δj,i+χ (7.1)

where χ are the Ni nearest neighbours of site i on the lattice. To obtain the equivalent

‘chain’ of 3d lead, we use scalar recursion technique. The basic formalism of scalar re-

cursion method has been discussed in section 2.3.2 of chapter 2. This recursion method

converts the tight-binding basis {|iµ〉} to a new one : {|n≫}.
Taking |1≫= |1µ〉 as the starting state, where 1 labels the site at the middle of the

cross-sectional edge of the lead where it is connected to the wire (cf. Fig. 7.1a) and µ is

any one of the ‘orbital’ indices, we generate :

|n+ 1≫= Hlead|n≫ −αµ
n|n≫ −βµ

n
2|n− 1≫ (7.2)

and

αµ
n =

≪n|Hlead|n≫
≪n|n≫ βµ

n =
≪n− 1|Hlead|n≫

[≪n|n≫≪n− 1|n− 1≫]1/2
(7.3)

The equivalent Hamiltonian in this new basis is tri-diagonal (chain-like) :

H̄µ
lead =

∞∑

n=1

αµ
n|n≫≪n| + βµ

n(|n≫≪n+ 1| + |n+ 1≫≪n|) (7.4)

where the index n labels the ‘atoms’ of the equivalent linear chain for the µ channel

and αµ
n and βµ

n signify its on-site and the hopping terms respectively. The sequences

{αµ
n, β

µ
n} converge, so that for a given error tolerance ε, there exists an integer c such

that for n > c, |αµ
n − αµ

c | < ε and |βµ
n − βµ

c | < ε. The ‘terminator’ approximation puts

αµ
n, β

µ
n = αµ

c , β
µ
c for all n > c. The initial c ‘sites’ of both the equivalent input and output
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chain leads, therefore, contribute to the effective scattering region in addition to the wire.

The wire of length 2M atoms is described by a Hamiltonian in the tight-binding basis as:

Hwire =
∑

i,µ

∑

j,µ′

H̃µµ′

ij |j, µ′〉〈i, µ|

H̃µµ′

ij = ǫiµwireδµµ′δij + tiµ,jµ′

wire (δj,i+1 + δj,i−1) (7.5)

The opposite ends of the wire are coupled to the semi-infinite effective 1D leads via

hopping matrix element tc. Note that as the starting states in the old and new basis

sets are same in the recursion process, the coupling coefficient tc remains same during

the change of tight-binding basis set. The procedure therefore converts the whole system

into an infinite linear chain in which effective scattering region is of extension 2M + 2c

sites and the rest represents the ballistic parts of the leads which do not participate in

the scattering process.

7.2.2 Calculation of the scattering matrix

Let us consider 2M + 2c = 2N and for convenience, rename the sites as follows (cf. Fig.

7.1b) :

H =
∑

n,µ

∑

n′,µ′

Ĥµµ′

nn′ |n′µ′〉〈nµ|

Ĥµµ′

nn′ = ǫ̃µnδµµ′δnn′ + vµµ′

n

(
δn′,n+1 + δn′,n−1

)
(7.6)

with

ǫ̃µn =





αµ
c n ≤ n1 left ballistic lead

αµ
c+1−n n1 < n ≤ n2 left scattering lead

ǫµwire n2 < n ≤ n3 scattering wire

αµ
n−(c+2M) n3 < n ≤ n4 right scattering lead

αµ
c n > n4 right ballistic lead

(7.7)

and
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vµµ′

n =





βµ
c n ≤ n1 left ballistic lead

βµ
c−n n1 < n < n2 left scattering lead

tµµ′

c n = n2 left junction

tµµ′

wire n2 < n < n3 scattering wire

tµµ′

c n = n3 right junction

βµ
n−(c+2M) n3 < n ≤ n4 right scattering lead

βµ
c n > n4 right ballistic lead

(7.8)

where n1 = 0, n2 = c, n3 = c+ 2M and n4 = 2c+ 2M = 2N .

We then compute the scattering matrix of the above mentioned system using the block

or vector recursion technique introduced by Godin and Haydock [21]. The essence of the

vector recursion technique is the block tridiagonalization of the system Hamiltonian by

changing to a new orthogonal set of vector basis, with the restriction that the ballistic

part of effective 1D lead Hamiltonian remains unchanged. In this last aspect, it differs

from the standard Lanczos method [20]. The numerical stability of this method [32]

has been established in studying problems related to Anderson localization and quantum

percolation model [33] and layering transition in 2D nano-strip [34] previously. Below we

describe the method briefly.

Let us consider, for the sake of demonstration, that we have two 1D ballistic leads, one

incoming and and another outgoing connected to the opposite ends of the scattering region

at positions |1〉 and |2N〉 (cf. Fig. 7.1b). The leads and the scatterer have µ = 1, 2, . . . L

scattering channels. The members of the new basis are generated by clubbing the input

and output leads together as the vector lead and so is the scattering region (cf. Fig. 7.1c).

The lead states are chosen to be

|Φn} =

(
|n, µ = 1〉 |n, µ = 2〉 . . . |n, µ = L〉
|m,µ = 1〉 |m,µ = 1〉 . . . |m,µ = L〉

)†

(7.9)

with m = 2N + 1 − n and n = 0,−1,−2, . . . ,∞. The starting state within the

scattering region is chosen to be

|Φ1} =

(
|1, µ = 1〉 |1, µ = 2〉 . . . |1, µ = L〉

|2N, µ = 1〉 |2N, µ = 2〉 . . . |2N, µ = L〉

)†

The subsequent members of the basis are generated from

B†
2|Φ2} = (H − A1)|Φ1},
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B†
n+1|Φn+1} = (H −An)|Φn} − Bn|Φn−1} for n ≥ 2

(7.10)

The matrix inner product is defined as the 2L× 2L matrix

{Φ1| ⊙ |Φ1} =

(
A B

C D

)

where the L× L matrices A,B,C and D are :

A = 〈1µ|1µ′〉 B = 〈1µ|2Nµ′〉
C = 〈2Nµ|1µ′〉 D = 〈2Nµ|2Nµ′〉

If this matrix is I then the states are called orthogonal.

It can be shown that the 2L× 2L matrices An and Bn are block-tridiagonal members

of the matrix representation of the Hamiltonian in the new basis:

An = {Φn| ⊙H|Φn} Bn = {Φn| ⊙H|Φn−1} (7.11)

so that the transformed Hamiltonian matrix can be divided in 2L× 2L blocks, with only

non-zero diagonal and sub-diagonal blocks.

The wave function |Ψ} may be represented in this new basis by a set {ψn} so that |Ψ}
=
∑

n ψn|Φn}. These wave function amplitudes ψn also satisfy an equation identical with

Eqn. (7.10).

In the ballistic part of the effective 1D lead chain, the onsite and hopping terms do

not vary. Therefore, electron potential must be periodic in this region and the solution

to the Schrödinger’s equation in the µ channel of the ballistic leads is traveling Bloch

wave : A
∑

m exp[±imθµ]|m〉. As the wave travels in the leads, the phase of its wave

function changes by θµ = cos−1 [(E − αµ
c )/(2βµ

c )], where E is the energy of the incoming

electron. In order to have only propagating solutions, we fix E as real and |E−αc| < 2βc.

This sets the energy window. This is reasonable because eventually only the propagating

modes enter in the expression of transmission matrix elements, as evanescent modes do

not contribute to the transmission directly [35]. In the µ channel of the incoming lead,

the incident and the reflected waves can be expressed as a sum
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A
∑

m

∑

µ′

[
exp(imθµ)δµµ′ + rµµ′

(E) exp(−imθµ′

)
]
|m〉

The second term is the reflected wave in the µ channel from incident waves in µ′

channels.

In the µ channel of the output lead there is a transmitted wave from incident waves

in µ′ channels [36]

A
∑

m

∑

µ′

tµµ′

(E) exp(−imθµ′

)|m〉

rµµ′

(E) and tµµ′

(E) are the complex reflection and transmission coefficients. The

boundary conditions are then imposed from the known solution in the leads at the junction

labeled by 0 and 1:

ψ0 =

( ∑
µ′ [δµµ′ + rµµ′

(E)]
∑

µ′ tµµ′

(E)

)
(7.12)

ψ1 =



∑

µ′

{
exp[iθµ]δµµ′ + rµµ′

(E) exp[−iθµ′

]
}

∑
µ′ tµµ′

(E) exp[−iθµµ′

]


 (7.13)

The amplitude at the n-th basis ψn may be written as

ψn = Xnψ0 + Ynψ1 (7.14)

where Xn and Yn satisfy the same recurrence relation as Eqn. (7.10) with EI replacing

H and also satisfy the boundary conditions X0 = I and X1 = 0, while Y0 = 0 and Y1 =

I. Note that X and Y are 2L× 2L matrices and ψn’s are column matrices of dimension

2L.

This new basis terminates after ν = N steps, as the rank of the space spanned by

the original tight-binding basis remains unchanged after the transformation. Hence the

recursion also terminates after ν steps. This gives an additional boundary condition,

Xν+1ψ0 + Yν+1ψ1 = 02L×2L. (7.15)
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If we now interchange the incoming and outgoing leads, we get a similar pair of equa-

tions for r′µµ′

and t′µµ′

, the transmission and reflection coefficients for a wave incident

from the second lead. Time-reversal symmetry demands that t must be the same for

waves of the same energy incident from either lead so that tµµ′

= t′µµ′

. In addition, rµµ′

and r′µµ′

differ only by a phase factor. Solving these equations for the S-matrix in the

effective scattering region, one has,

S(E) = −(XN+1 + YN+1E
∗(θ))−1(XN+1 + YN+1E(θ))

=

(
rµµ′

(E) tµµ′

(E)

tµµ′

(E) r′(E)µµ′

)
(7.16)

where

E(θ) =

(
exp(iθµ)δµµ′ 0

0 exp(iθµ)δµµ′

)

The various steps of our approach are shown schematically in Fig. 7.1.

The conductance is then given by Landauer formalism. It expresses the electronic

conductance in one-dimensional conductor as a quantum mechanical scattering problem

and relates to the total transmission probability of the electron at the Fermi level [37],

T(EF ), as

G =

(
e2

πh̄

)
T (EF ) =

(
e2

πh̄

) ∣∣∣∣∣∣
(1/L)

∑

µµ′

tµµ′

(EF )

∣∣∣∣∣∣

2

(7.17)

We have assumed in our derivation the leads to have finite lateral dimensions, though

in actual experiments, the leads are three dimensional. In order to study the influence

of the extend of the lateral dimension of the leads, we have checked our results with

increasing size of the lateral cross-section of the leads. Though the quantitative values

do change with the change of the lateral dimension, the qualitative nature holds good

in every case. In addition, we find for sufficiently large choice of lateral cross-section,

the recursion coefficients (α, β) for the leads converge to that of a bulk system (see

for details section 7.3.1), indicating for such large lateral cross-section, the leads behave

as truly three-dimensional leads. The other approach to the problem could have been

inclusion of periodic boundary condition as have been adopted in various works [15]-

[18],[31, 35, 38, 39]. If we impose periodic boundary conditions on the lead surfaces, only
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Figure 7.1: Recursive reduction of (a) a system of two quasi 1D semi-infinite leads plus

1D wire into (b) a system of infinite linear chain. The numbering of sites of the equivalent

1D infinite chain is shown in (b). The directions of incident wave einθ to the scattering

region, the reflected wave re−inθ and transmitted wave teinθ from the scattering region

are shown with arrows. (c) Formation of vector basis by folding the infinite chain and

clubbing the two sites together.
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those modes which are consistent with the boundary conditions can travel through them.

In an earlier paper we have shown [40], that it is possible to change over from a site to

a mode basis and reformulate the vector recursion in the new basis. The lead is broken

up into slices perpendicular to its length and the composite site label i is partitioned into

two : one is the slice label s and the other is the position on this slice k. The basis

{|sk〉} is then converted into a slice-mode basis {|sν〉} and the Hamiltonian is expressed

in this new basis. Exactly as the Hamiltonian [Eqn. (7.6)] mixes orbital labeled channels

because of off-diagonal terms vµµ′

, in the mode based formalism off-diagonal terms in the

corresponding Hamiltonian causes the outgoing wave to be of a mixed mode type even if

the incoming wave is in a single mode. Otherwise, the formal methodology is identical

in the two cases. The interested reader is referred to the paper referenced above for the

details. At this point, it is important to mention that recently K. K. Saha et al have

suggested a method that is able to take into account periodicity in the leads without

assuming the periodicity of the conductor in the lateral direction by solving the Dyson

equation [41].

7.3 Application

7.3.1 The model

Since our aim here is to propose a method rather than to evaluate the properties of any

particular system in quantitative detail, we present the study of a simple model system.

It consists of a wire, few atoms long, sandwiched between two identical semi-infinite leads.

Both the wire and the leads have only a single channel (L = 1) corresponding to single

s-band. The cross-sectional size of each lead in our calculation was 5×5. The atoms in

the leads form a simple cubic lattice. Each lead is described by a single-band nearest-

neighbour TB Hamiltonian. Two TB parameters in Eqn. (7.1) : the on-site and the

hopping terms, which are material specific in realistic cases, have been chosen as ǫi =

ǫlead = 0 and tij = tlead = 2 in some arbitrary energy unit. As a first step, we performed

scalar recursion on the leads to convert them into equivalent chains and determined the

contribution of each lead to the effective scattering region. We took the starting state

of recursion to be the sites which bound the leads to the wire. For a simple cubic lead,
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Figure 7.2: Variation of recursion coefficient β with recursion steps for different cross-

sectional sizes of the lead, with tlead = 2.0 and ǫlead = 0.0. The lower left inset shows the

variation of converged values of β (βc) with cross-sectional size.

the recursion coefficients αn = ǫlead = 0 while the other coefficients βn fluctuate with

recursion steps converging to an asymptotic value βc. The convergence of βn depends

on the lattice structure and lateral cross-sectional size of lead. We have not used any

periodic boundary conditions in the lateral direction. To see the finite size effect of lead

in the lateral direction, we have repeated our calculations for different cross-sectional

sizes. Convergence of β with recursion steps for different cross-sectional sizes is shown

in Fig. 7.2. As the cross-section increases, the number of recursion steps required to

converge β decreases (i.e size of effective scattering region decreases which facilitates to

easier computational execution). Variation of converged value of β (βc) with lateral cross-

sectional size of the lead is shown within the inset. Notice after a certain cross-sectional

size (30 × 30 with the present choice of parameters), β converges to that of the bulk

cubic system, which is 6 for choice of ǫlead = 0 and tlead = 2.0. This implies that there is

no further effect of finite cross-section on βc and therefore on conductance. In changing

cross-section from 5×5 to 30×30, βc changes by 9 % (The change is mostly coming in

going from 5×5 to 11×11 and after that change is very minute). The corresponding
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change in conductance is much smaller : 5 % for even numbered wire, less than 1 % for

odd numbered wire (cf. Fig. 7.3). We have checked that qualitatively results are same

for any cross-sectional size, but if one is concerned about the quantitative value, then

convergence of βc with cross-sectional size has to be checked. For our chosen case, βn

converged after around 80 recursions. So in our calculation, c was taken to be 80 and

βn = β80 for n ≥ 80. For a model simple cubic lead, the Fermi energy is at Elead
F = ǫlead

which is obvious from the dispersion relation E = ǫlead + 6tlead cos(ka) for a half-filled

band with Fermi wave number kF = π/2a. Fermi energy EF of the lead-wire-lead system

tends to align with the Fermi energy of the semi-infinite lead. Conductance is therefore

calculated at EF = ǫlead.

7.3.2 Results and discussions

Our calculated conductance as a function of number of atoms in the wire is shown in

Fig. 7.4. The inter-atomic hopping within the wire was fixed to twire = 2 = tlead . To

consider the effect of charge transfer between the leads and the wire [∆ǫ = ǫlead - ǫwire

6= 0], we considered the cases |∆ǫ| = 0.2 and |∆ǫ| = 0.4 along with no charge transfer

condition |∆ǫ| = 0. Non zero values of ∆ǫ were achieved by changing ǫwire. For each case,

we considered three types of coupling between lead and atomic wire, given by lead-wire

hopping coefficient tc : (i) tc = 0.9 tlead for weak coupling, (ii) tc = tlead for direct coupling

and (iii) tc = 1.1 tlead for strong coupling.

The odd-even oscillation in conductance for no charge transfer situation is obvious

from Fig. 7.4a i.e wires with odd-number of atoms have larger conductance as compared

to the even numbered ones, for all the three types of couplings. In this ideal case of

no charge transfer situation, all odd numbered atomic wires have conductances equal to

quantum unit G0 = (e2/πh̄) for all the three coupling cases, while for even numbered

wires the conductances are lower. The conductance of even-numbered wires decreases

as one moves from strong to direct to weak coupling. This means that the amplitude of

conductance oscillation is a maximum for the weak coupling case (tc = 0.9 tlead) and it is a

minimum for the strong coupling case (tc = 1.1 tlead). Similar results have been predicted

by Khomyakov et al for a system of 1D wire connected with 1D leads using tight-binding
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Figure 7.3: Variation of conductance with cross-sectional sizes for an even numbered wire,

N = 4 considering direct coupling and |∆ǫ| = 0.2. Variation in conductance is around

5% for even numbered wire. For odd numbered wire (not shown in the above plot), it is

less than 1%.

calculation [26] which expressed the dependence of conductance on tc for even numbered

wire as

G = G0
4t4c/t

2
wire

[1 + 4t4c/t
2
wire]

2

It follows the same trend as observed in the top panel of Fig. 7.4. Another point to

notice from Fig. 7.4a is that the length of the wire does not have any effect in this case

either on amplitude or phase of the oscillation. All odd numbered atomic wires and also

all even numbered atomic wires have equal conductances for a fixed coupling type. The

odd-even oscillations for our single band model system is in agreement with the results

on Na-atom wires [22]-[28].

For |∆ǫ| = 0.2 in Fig. 7.4b, the odd-even oscillation in conductance is again obvious

within the range of our plot. However, a close view to these curves, indicates that the

conductance of the odd numbered atomic wires gradually decreases while that of the

even numbered atomic wires slowly increases. If we increase the number of atoms in the

wire to more than 10 (not shown in Fig. 7.4), we find that the parity of conductance

oscillation changes from odd-even to even-odd, i.e even numbered atomic wires now have

larger conductance than the conductance of odd numbered atomic wires.
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Figure 7.4: Conductance as a function of the number of atoms in the wire. For given

values of tlead and twire, we consider three cases: (a) |∆ǫ| = 0, (b) |∆ǫ| = 0.2 and (c) |∆ǫ|
= 0.4. For each case, we consider three types of coupling between lead and wire : green

curve for strong coupling, black for direct coupling and red curve for weak coupling.
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Figure 7.5: Density of states (left panel) and total transmittance (right panel) in no charge

transfer (|∆ǫ| = 0) and direct coupling (tc = tlead) situation for wires of lengths N = 1,

N = 2 and N = 3 (from top to bottom). The dashed lines label the Fermi energy.

Increasing |∆ǫ| to 0.4, there will be larger charge transfer between the lead and wire.

This causes a change in the parity of conductance oscillation from odd-even to even-odd

for even shorter lengths : around wire lengths of 7 atoms as shown in Fig. 7.4c. From

our study, it is therefore clear that the amplitude of conductance oscillation is mainly

controlled by coupling coefficient between the leads and the wire, while the parity of the

oscillation is controlled by the length of the wire and onsite energy difference between

wire and lead Hamiltonians. There are few reports [27, 29] which indicate the change of

parity of conductance oscillation and variation of oscillation amplitude for Na-atom wire.

To understand the odd-even oscillation in the conductance, we have calculated the

density of states and transmittance as a function of energy for wires of lengths N = 1, N

= 2 and N = 3 for the case of zero charge transfer. The results shown in Fig. 7.5 bring out
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Figure 7.6: DOS around Fermi energy for several even numbered wires in two cases - |∆ǫ|
= 0 (left) and |∆ǫ| = 0.4 (right). For |∆ǫ| = 0.4, DOS at EF gradually increases with

wire size. For N = 14, the deep at EF for |∆ǫ| = 0 case is replaced by a peak at EF for

|∆ǫ| = 0.4. Lead-wire coupling was considered to be of direct type in all cases.

the essential mechanism which has been discussed also in Ref. [26]. For odd-numbered

atomic wires, the Fermi-energy falls in the non-bonding peak and it gives a maximum in

the transmittance at E = EF . On the other hand, for even numbered wire, the Fermi

level lies in the minimum between the bonding and non-bonding peaks and consequently

it exhibits a less transmission at E = EF .

In order to explain the flipping of conductance oscillation from odd-even to even-odd,

we have plotted in Fig. 7.6 the DOS around Fermi energy of several even numbered atomic

wires for two cases of no charge transfer and finite charge transfer situations. When there

is no charge transfer (|∆ǫ| = 0), all the even numbered wires have a minimum in DOS at

EF . When we allow sufficient charge transfer to take place between wire and lead, DOS

at EF gradually increases with increasing length and at a critical size, a peak will appear

in DOS at EF . The opposite occurs for odd-numbered atomic wire (not shown in the

Fig. 7.6) and the nature of conductance oscillations flips from odd-even to even-odd. If

we increase the wire size further, again after another critical size, the odd-even nature of

oscillations is restored. This repetition of even-odd or odd-even oscillation continues with

increasing wire size. To investigate the effect of |∆ǫ| on the period of parity flip, we have

plotted the conductance as a function of number of atoms in the wires in Fig. 7.7 for

two different values of |∆ǫ| keeping coupling parameter fixed. One can see clearly that as
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Figure 7.7: Plot of conductance as a function of wire size for two values of |∆ǫ| : circles

connected by solid line for |∆ǫ| = 0.6 and squares connected by dashed line for |∆ǫ| =

0.8. Conductances for all even numbered wires and all odd numbered wires are shown

separately by red line and green line respectively within the insets. Inset (a) for |∆ǫ| =

0.6 and inset (b) for |∆ǫ| = 0.8. Inset (c) shows the variation of period of parity flip with

|∆ǫ| and solid line through the right triangles is the fitted curve.

|∆ǫ| increases, frequency of parity flip increases i.e period of parity flip decreases. To get

a better insight into parity flip, we have shown in Fig. 7.7 the conductance variation of

odd numbered and even numbered wires separately in insets (a) and (b) for |∆ǫ| = 0.6

and |∆ǫ| = 0.8 respectively. Each curve shows sinusoidal-like variations. Curves of even

numbered and odd numbered wires together constitute loops. Length of one loop indicates

the wire size required to flip the oscillation from odd-even to even-odd. The nodal points

of loop indicate the boundaries between odd-even and even-odd. Two consecutive loops

constitute a period. Number of loops in inset (b) is larger than in inset (a). Variation

of period of parity-flip with |∆ǫ| is shown by right triangles in inset (c). For |∆ǫ| = 0,

there is no parity flip i.e period is infinity. As |∆ǫ| increases, the period decreases. For

sufficiently large value of |∆ǫ| (>> tc), the odd-even nature of conductance oscillation

no longer persists. Period of conductance oscillation then changes to more than two

atoms which is the characteristic of wires consisting of atoms of higher valency. Within
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the odd-even nature of conductance oscillations, the period of parity flip goes roughly as

(A/|∆ǫ|) +B with A = 12.605 and B = -0.253. However, coupling parameter tc does not
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Figure 7.8: Plot of conductance as a function of wire size for two values of tc - circles

connected by solid line for tc = 1.1 tlead and squares connected by dashed line for tc = 0.9

tlead. Conductances for all even numbered wires and all odd numbered wires are shown

separately by red line and green line respectively. Left inset corresponds to tc = 1.1 tlead

and right one to tc = 0.9 tlead .

have any effect on period of parity flip. To check this, we have plotted the conductance

variation with wire size in Fig. 7.8 for two different coupling constant tc keeping |∆ǫ|
fixed, while two insets show the conductance variation of odd numbered wires and even

numbered wires separately (left inset corresponds to tc = 1.1 tlead and right one to tc =

0.9 tlead). The number of loops in both the cases are same indicating tc has no effect on

the period. Larger width of loops in right inset compared to that in left inset indicates

that tc controls the amplitude of odd-even oscillations.

So far we have studied the role of the charge neutrality on the conductance oscillations

of monoatomic wires considering the mirror symmetry between the two junctions. We

found odd-even oscillation in the conductance. Moreover, for no charge transfer situation,

conductance of odd numbered wires is quantized to G0, while for even numbered wires

conductance is less than G0. Now we consider the situation where mirror symmetry
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Table 7.1: Values of conductances for various wire lengths in absence of mirror symmetry.

tc1 and tc2 are the two lead-wire couplings of the two junctions.

wire length tc1 = tlead tc1 = tlead tc1 = tlead

(N) tc2 = tlead tc2 = 1.1 tlead tc2 = 1.2 tlead

1 0.9996 0.9906 0.9672

2 0.7164 0.7876 0.8482

3 0.9996 0.9906 0.9672

4 0.7164 0.7876 0.8482

5 0.9996 0.9906 0.9672

between two lead-wire junctions is broken by using two different coupling coefficients for

two junctions, keeping charge-neutrality intact. Table 7.1 contains our result. Clearly,

odd-even oscillations still occur, but the conductance quantization for odd numbered wires

is weakened by reducing the value less than G0. This observation is in accordance with

the previous study [24, 42].

7.4 Summery and conclusions

To conclude, we have used combination of real-space based scalar and vector recursion

techniques to study the transport properties of a lead-wire-lead system. Our study on

model system described by single band TB Hamiltonian provides a detail understanding

of the effect of lead-wire coupling on the conductance of monoatomic wire. Working with

model system, gives us the freedom of changing the model parameters and allows us to

work with much longer wires than usually considered in literature. Odd-even oscillation

in the conductance with increasing length of wire has been observed in agreement with

earlier studies [3]-[30]. In presence of charge neutrality between the leads and the wire

and in presence of perfect mirror symmetry between the incoming and outgoing leads,

the conductance of odd numbered wires is quantized to G0, while it is less than G0 for

even numbered wires. As the charge neutrality is broken, the oscillation in conductance

still exists, but with the distinction that for a given choice of charge transfer (∆ǫ) and

lead-wire hopping (tc), the conductance values of the odd numbered and even numbered
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wires are no longer fixed quantities as the size of the wires is changed. For such systems,

we further found a change of phase of conductance oscillation from odd-even to even-

odd with increasing number of atoms in the wire. We found that while the amplitude

of oscillation depends on lead-wire coupling parameter tc, it is the amount of charge

transfer between lead and wire, which affects the period of oscillation. Lifting of mirror

symmetry between two lead-wire junctions in no charge transfer condition is found to

reduce the conductance of odd numbered wires below the quantized value of G0. The

proposed technique can be easily generalized for application to realistic cases. To apply

this approach to real systems, one needs to generate TB parameters of lead and wire via

self consistent calculations while multi-orbital effect can be taken into account via multi-

channel generalization of Landauer-Büttiker formula (see Eqn. 7.17). The proposed

real space technique of calculation of conductance coupled with localized Wannier basis

generated out of self-consistent DFT calculation [43, 44] can lead to a viable technique

for study of quantum transmittance and conductance of nanoscale systems of various

geometries in general.



Bibliography

[1] A. I. Yanson, G. R. Bollinger, H. E. van der Brom, N. Agrait, J. M. van Ruitenbeek,

Nature 395, 783 (1998).

[2] H. Ohnishi, Y. Kondo, K. Takayanagi, Nature 395, 780 (1998).

[3] R. H. M. Smit, C. Untiedt, G. Rubio-Bollinger, R. C. Segers, J. M. van Ruitenbeek,

Phys. Rev. Lett. 91, 076805 (2003).

[4] W. H. A. Thijssen, D. Marjenburgh, R. H. Bremmer, J. M. van Ruitenbeek, Phys.

Rev. Lett. 96, 026806 (2006).

[5] J. M. Krans, J. M. van Ruitenbeek, V. V. Fisun, I. K. Yanson, L. J. de Jongh, Nature

(London) 375, 767 (1995); A. I. Yanson, I. K. Yanson, J. M. van Ruitenbeek, ibid. 400

144 (1999).

[6] P. Sautet, C. Joachim, Phys. Rev. B 38, 12238 (1988).

[7] E. G. Emberly, G. Kirzenow, Phys. Rev. B 58, 10911 (1988).

[8] K. Hirose, M. Tsukada, Phys. Rev. Lett. 73, 150 (1994).

[9] K. Hirose, M. Tsukada, Phys. Rev. B 51, 5278 (1995).

[10] H. J. Choi, J. Ihm, Phys. Rev. B 59, 2267 (1999).

[11] P. A. Khomyakov, G. Brocks, Phys. Rev. B 70, 195402 (2004).

[12] N. D. Lang, Phys. Rev. B 52, 5335 (1995); N. D. Lang, Phys. Rev. Lett. 79, 1357

(1997).

148



Chapter 7. Recursive approach to study transport properties of atomic wire 149

[13] M. D. Ventra, S. T. Pantelides, N. D. Lang, Phys. Rev. Lett. 84, 979 (2000).

[14] Y. Xue, S. Datta, M. A. Ratner, Chem. Phys. 281, 151 (2001).

[15] M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 65,

165401 (2002).

[16] K. S. Thygesen, M. V. Bollinger, K. W. Jacobsen, Phys. Rev. B 67, 115404 (2003).

[17] A. Calzolari, N. Marzari, I. Souza, M.B. Nardelli, Phys. Rev. B 69, 035108 (2004).

[18] P. Khomyakov, G. Brocks, V. Karpan, M. Zwierzycki, P. J. Kelly, Phys. Rev. B 72,

035450 (2005).

[19] R. Haydock, V. Heine, M. J. Kelly, J. Phys. C :Solid State Phys 5, 2845 (1972).

[20] R. Haydock, Solid State Physics, editor: H. Ehrenreich, F. Sietz, D. Turnbull (Aca-

demic, New York, 1980) volume 35.

[21] T. J. Godin, R. Haydock, Phys. Rev. B 38, 5237 (1988).

[22] N. D. Lang, Phys. Rev. Lett. 79, 1357 (1997).

[23] S. Tsukamoto, K. Hirose, Phys. Rev. B 66, 161402 (2002).

[24] H. -S. Sim, H. -W. Lee, K. J. Chang, Phys. Rev. Lett. 87, 096803 (2001).

[25] P. Havu, T. Torsti, M. J. Puska, R. M. Nieminen, Phys. Rev. B 66, 075401 (2002).

[26] P. Khomyakov, G. Brocks, Phys. Rev. B 74, 165416 (2006).

[27] R. Gutierrez, F. Grossmann, R. Schmidt, Acta Phys. Pol. B 32, 443 (2001).

[28] Y. Egami, T. Ono, K. Hirose, Phys. Rev. B 72, 125318 (2005).

[29] P. Major, V. G. Suarez, S. Sirichantaropass, J. Cserti, C. J. Lambert, J. Ferrer, G.

Tichy, Phys. Rev. B 73, 045421 (2006).

[30] J. K. Viljas, J. C. Cuevas, F. Pauly, M. Hafner, Phys. Rev. B 72, 245415 (2005).



Chapter 7. Electronic structure and transport properties of nano-materials 150

[31] K. S. Thygesen, K. W. Jacobsen, Chem. Phys. 319, 111 (2005).

[32] T. J. Godin, R. Haydock, Comp. Phys. Comm. 64, 123 (1991).

[33] I. Dasgupta, T. Saha, A. Mookerjee, Phys. Rev. B 47, 3097 (1993).

[34] S. Datta, D. Choidhuri, T. Saha-Dasgupta, S. Sengupta, Eup. Phys. Lett. 73, 765

(2006).

[35] K. Xia, M. Zwierzycki, M. Talanana and P. J. Kelly, Phys. Rev. B 73, 064420 (2006).

[36] The process of vector recursion converts the lattice into a one-dimensional chain,

which is then folded to clump two sites of the chain together to define the vector basis

set . For a chain with folded configuration (see Ref. [21] for details) both the reflected

and transmitted waves move in the opposite direction to that of the incident wave.

[37] The Fermi energy of the lead-wire composite system is determined by the macroscopic

lead Hamiltonian.

[38] M. B. Nardelli, Phys. Rev. B 60, 7828 (1999).

[39] P. A. Khomyakov and G. Brocks, Phys. Rev. B 70, 195402 (2004).

[40] K. Tarafder, T. Mitra and A. Mookerjee, Physica B 371, 100 (2006).

[41] K. K. Saha et al, Phys. Rev. B 77, 085427 (2008).

[42] H. -W. Lee and C. S. Kim, Phys. Rev. B 63, 075306 (2001).

[43] N. Marzari, D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).

[44] O. K. Andersen, T. Saha-Dasgupta, Phys. Rev. B 62, R16219 (2000).


